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ABSTRACT. We build new Hilbert-type integral inequalities in the whole plane with the
non-homogeneous kernel involving some parameters and the best constant factors. We
also consider their reverse.

1. Introduction

If f(z),g(x) > 0 satisfying 0 < [~ f*(z)dz < oo and 0 < [} g?(z)dz < o0,
then we have a space(see [1])

(1.1) / / I dxdy <7 (/ f2(z)dx /OO g%x)dx)é ,

where the constant factor m is the best possible. Inequality (1.1) is well known as
Hilbert’s integral inequality, which is important in analysis and applications!* =2l
By Inequality (1.1), we can get a Hilbert-type integral inequality with a non-
homogeneous kernel as follows!®:

o [ ([ ) (o)

Some inequalities with the non-homogenous kernels have been studied(see[4-9]).

By applying the method for (1.2) and using the way of real analysis, the main
objective of this paper is to give new Hilbert-type integral inequalities in the whole
plane with the non-homogeneous kernel involving some parameters and best con-
stant factors. Their reverse forms are also considered. As applications, we also
obtain the equivalent forms and some particular cases.
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2. Some Lemmas

Lemma 2.1. If0 < a1 < ag < 7, define the weight function w(z) (z € (—oo0,0))
as follow:

oo 1
2.1 = i !
(2.1) w(z) /_ooien{lig}{lqt%ycosai + (wy)Q} iy

Then we have w(x) # 0, where

(65} ™ — Qg

(2.2) k:=

sina;  sinag

Proof. For x € (—00,0), setting u = xy, u = —xy respectively in the following first
and second integrals, we have

w(x) = /O 7 dy

—oo L4 22y cosaq + (zy)?

e —x
d

+ /0 1+ 2zycosas + (zy)? 4

& 1 & 1

/0 u?2 +2ucosag +1 u+/0 u?2 —2ucosog + 1 v
o (651 ™ — Q9
T ginay  sinas
For z € (0,00), setting u = —xy, u = xy respectively in the following first and

second integrals, we have

0 T
= d
w(z) [m 1+ 2zy cos an + (xy)? Y

o0
+ / x dy
o 14 2zycosag + (vy)?

o0 o0
1 1
= 5 du + du =k
o u?—2ucosag+1 o u?+2ucosag+1

The lemma is proved. O

Note. (1) It is obvious that w(0) = 0;
(2) If a1 = as = a € (0, m), then it follows that

. 1 1
zer?%g} { 1+ 2zycosa; + (zy)? } 1+ 2xycosa+ (y)?’
and by Lemma 2.1, we can obtain

™

w(x) =

(z #0).

sin o
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Lemma 2.2. Ifp > 1,% +% = 1,0 < a1 < ay < m, f(x) is a non-negative
measurable function in (—oo,00), then we have

[ee] [o'e) 1 p
— p—1 i
(2.3)  J: /_OO Yl (/_Ooier{'{lig}{H%ymmﬁ(xy)z}f(x)dx> dy
< kp/ ||~ fP (z)da.

Proof. By Lemma 2.1 and Holder’s inequality [13], we have

0o 1 p
24 i d
(24) (/Oo zen{li%} { 1+ 2zy cos a; + (2y)? } /(@) as)
> 1
< i P(2)d
- /,OO zen{lig} { 14 2zy cos a; + (zy)? } fH(w)de
e’} 1 p—1
i d
X (/_Oo zen{li%} { 14 2zy cos a; + (zy)? } a:)

& 1
— [P—1|y|—PtH1 / ; P (1) d.
v oo zen{l%%} 1+ 2zy cos a; + (zy)? JH(@)de
Then by Fubini’s theorem, it follows

R T A e e e B
= o [ w@ll s = [ el s,

— 00 —

IN

The lemma is proved. o

3. Main Results and Applications

Theorem 3.1. Ifp > 1,%—1—% =1,0< oy <y <m,f,g >0, satisfying 0 <
[2 2|7 fP(2)da < oo and 0 < [72_ |yl g%(y)dy < oo, then we have

oo oo 1
1 I:= i dzd

<k([:ur7%mm);([mwrb%w@)ﬂ

[e%s) [e%e) 1 p
2 = p—1 i
(3.2) J /m ] (/Oo ierr{qg}{H%ycomi+(my)2}f(x)dx> dy
<o [l s,
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where the constant factor k and kP are the best possible and k is defined by (2.3).
Inequality (3.1) and (3.2) are equivalent.

Proof. First, we prove (3.2). If (2.4) takes the form of equality for a y € (—o0,0) U
(0,00), then there exists constants A and B, such that they are not all zero, and
AfP(x) = Bgi(y) a.e. in (—o00,0) U (0,00). Hence, there exists a constant C, such
that AfP(z) = Bgi(y) = C a.e. in (0,00). We suppose A # 0 (otherwise B = A =
0). Then |z|~fP(z) = % a. e. in (—o00,00), which contradicts the fact that
0< [ |z|7'fP(z)dx < co. Hence (2.4) takes the form of strict inequality; so does
(3.2), and we have (3.2).
Then we prove that they are equivalent. By Holder’s inequality [13], we have

a9 1= [ ([ i sy eonar s e 1) 1oty

1

<Jh ( /- |y|lgq<y>dy)q.

By (3.2), we have (3.1). On the other hand, suppose that (3.1) is valid. Setting

o] 1 p—1
= [ylP! i d
o= (i, romemarrae) 1)

then it follows J = ffooo ly| =19 (y)dy. By (2.3), we have J < oo. If J = 0, then
(3.2) is obvious valid; if 0 < J < oo, then by (3.1), we obtain

o0
0</ gt (y)dy =J =1
o0

1

(3.4 <k ([l fp(x)dxy ([ )
os  at=(f 'ylgq(y)dyy k([ |$|1fp(x)dx);

Hence we have (3.2), which is equivalent to (3.1).
_ Finally, we prove the factors are best possible. For ¢ > 0, define functions
f(x), g(x) as follows:

) T, x € (1,00),
fl@):=4¢ 0, xz € [-1,1],
(—2)" %, =z € (—o0,—1);
szzE, x € (0,1),
g(z):=< 0, x € (—o00,—1) U1, 00),
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. o A
then L := {fioo |z| 1fp Ydz} > {f ly| =1 (y)dy} s = % and

~ 1 ~
1= i dedy =11 + I, + I3+ L.
/_Oo /_OO ’LEI?%%} { 1 ¥ 2:1?yCOSOé,L' + (I”y)Q } f( ) ( ) xray 1 + 2 + 3 + 4,

where,

2¢e

1 0
2 (—y) o
I = — P
! /,Oo( z) l/l 1+ 2zycosaq + (my)2dy du

2¢e
q

—1 1
_ze Yy
I, = — P
2 /_OO( ?) l/o 1+ 2zycosas + (:vy)zdy] de

2e

I3 = /OO = /0 (cy)© dy| dz
1 _1 1+ 2zycosas + (zy)?

2e
q

Y

I
4 1+ 2xycosay + (zy)?

I
»—\
3
8
|
Y
O\H

dy} dx,

By Fubini’s theorem!", we obtain

2e

L=1 = *HE/ v du | dz (u=
te /1 v <0 u2—|—2ucosoz1+1u v (u=uzy)

e ! u's du u's du
= x 3 + 5 dx
1 0o U*+2ucosa; +1 1 u®+2ucosa; +1

1 2e 00 2¢e
_ i/ u e du +/ / —1-2e g u e du
2¢ Jo u?+2ucosa +1 1 u u? +2ucosaq + 1

1 ! we > u-
= — d d
2¢e (/0 u? 4+ 2ucosay + 1 u+/1 u? 4+ 2ucosag + 1 u),

1 L u%s S u—%i
=1 =5 d du) . (u=—
R </0 u? —2ucosap +1 u+./1 u2 — 2ucosas + 1 ). (u y)

In view of the above results, if the constant factor & in (3.1) is not the best possible,
then exists a positive number K with K < k, such that

[y

2¢e

1 2e e’} —

u e u r
3.6 d d
(3.6) /0 u? +2ucosay + 1 u+/1 u? +2ucosag + 1 Y

1 2e 0o _2¢e
u'a du u” rdu - .
=el <eKL =K.
+/0 u? —2ucosag + 1 +/1 u? —2ucosag + 1 ¢ ‘




6 Dongmei Xin

By Fatou’s lemma [14] and (3.6), we have

& 1 > 1
3.7 k = d d
(3.7) /0 u2 4+ 2ucosag +1 u+/0 u?2 —2ucosag + 1 v

1 uz—g o) ui%
= / lim du + / lim du
o e—=0t u? 4+ 2ucosag +1 1 e—0+ u? +2ucosag + 1
! u's o uwr
+ / lim — du +/ lim du
0 e—0t u® —2ucosag +1 1 eo0t u? —2ucosas + 1

2¢e _2¢e

<1 1 = d h e d
1m6—>0+[/0 u2 + 2ucosa + 1 u+/1 u? 4+ 2ucosag + 1 "

1 U% s} ’U,_QT’E
Jr/ dqu/ du] <K,
0 u?—2ucosag+1 1 u?2—2ucosas +1

which contradicts the fact that K < k. Hence the constant factor k in (3.1) is the
best possible.

If the constant factor in (3.2) is not the best possible, then by (3.3), we may
get a contradiction that the constant factor in (3.1) is not the best possible. Thus
the theorem is proved. O

In view of Note (2) and Theorem 3.1, we still have

Theorem 3.2. Ifp > 1,= —|— = =10 < a < 7w f,g > 0, satisfying 0 <
25 |z P (2)de < o0 cme < f_oo ly|~1g%(y)dy < oo, then we have
(3.5) A : F(@)gty)dad
' oo J oo 1+ 2xycosa + (zy)? TI9\Y)6T0Y
oo Lo 1
< ([ rtras)” ([ ea)
— 0o — 00
o0 L 0o 1 p
3.9 p= d d
(3.9) /_Oo vl (/_OO 1+21:ycosa+(scy)2f(x) x) Y

< [ga) [ o

s

where the constant factor z1— and [7—17 are the best possible. Inequality (3.8)
and (3.9) are equivalent.
In particular, for « = /3, we have the following equivalent inequalities:

(3.10) || @ty

< Z ([ e )é(/_iwwg%y)dy)}’,
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) [ ([ atee)
B [

Theorem 3.3. As the assumptions of Theorem 8.1, replacingp > 1 by 0 <p < 1,
we have the equivalent reverses of (3.1) and (3.2) with the best constant factors.

Proof. By the reverse Holder’s inequality™?], we have the reverse of (2.3) and (3.3).
It is easy to obtain the reverse of (3.2). In view of the reverses of (3.2) and (3.3),
we obtain the reverse of (3.1). On the other hand, suppose that the reverse of (3.1)
is valid. Setting the same g(y) as the proof of theorem 3.1, by the reverse of (2.3),
we have J > 0. If J = oo, then the reverse of (3.2) is obvious valid; if J < oo, then
by the reverse of (3.1), we obtain the reverses of (3.4) and (3.5). Hence we have the
reverse of (3.2), which is equivalent to the reverse of (3.1).

If the constant factor k in the reverse of (3.1) is not the best possible, then there
exists a positive constant K (with K > k), such that the reverse of (3.1) is still valid
as we replace k with K. By the reverse of (3.6), we have

(3.12) /1 1 + ! Td
) wa du
o w24+ 2ucosa;+1  u?2—2ucosas+1

+/OO ! + L “Fdu>K
u~rdu .
1 v+ 2ucosag +1 w2 —2ucosas +1

For ¢ — 07, by the Levi’s theorem™, we find

> 1 1 2e
3.13 P d
( ) /1 [u2—|—2uc0soz1+1+u2—2ucos0¢2—|—1]u v

o 1 1
%/ 5 + du,
1 |u?P+2ucosay; +1  u?—2ucosas + 1

2e 2¢9
q

For 0 < £ < g9,¢q < 0, such that 1+2%>0, since u« <wu7e ,u€[0,1), and

1
1 1 2c0
5 + - u e du
o Lu*+2ucosa;+1  wu®—2ucosag+1

! 1 1 22
- /o {(u + cosaq)? 4 (sinay )? * (u—cosag)? + (sinag)J e du
1 1 T2 1 1 2¢0
{(sinal)2 + (sina2)2] /0 udu = [(sinoq)2 + (Sinag)Q} <1 + q> <%

then by Lebesgue control convergence theorem!['¥, for e — 0%, we have

IN

/1 1 N 1 =,
w'e du
o |u2+2ucosa; +1 w2 —2ucosas+1
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1
1 1

3.14 du.

( ) /O[u2+2ucosa1+1+u2—2ucosa2+l v

By (3.12), (3.13) and (3.14), for ¢ — 0", we have k > K, which contradicts the fact
that k¥ < K. Hence the constant factor k in the reverse of (3.1) is the best possible.

If the constant factor in reverse of (3.2) is not the best possible, then by the
reverse of (3.3), we may get a contradiction that the constant factor in the reverse
of (3.1) is not the best possible. Thus the theorem is proved. O

By the same way of Theorem 3.3, we still have

Theorem 3.4. As the assumptions of Theorem 3.2, replacingp > 1 by 0 <p < 1,
we have the equivalent reverses of (3.8) and (3.9) with the best constant factors.
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