DOI QR코드

DOI QR Code

Strong formulation finite element method for arbitrarily shaped laminated plates - Part I. Theoretical analysis

  • Fantuzzi, Nicholas (Department of Civil, Chemical, Environmental and Materials - DICAM, University of Bologna) ;
  • Tornabene, Francesco (Department of Civil, Chemical, Environmental and Materials - DICAM, University of Bologna)
  • Received : 2013.12.17
  • Accepted : 2014.01.17
  • Published : 2014.03.25

Abstract

This paper provides a new technique for solving the static analysis of arbitrarily shaped composite plates by using Strong Formulation Finite Element Method (SFEM). Several papers in literature by the authors have presented the proposed technique as an extension of the classic Generalized Differential Quadrature (GDQ) procedure. The present methodology joins the high accuracy of the strong formulation with the versatility of the well-known Finite Element Method (FEM). The continuity conditions among the elements is carried out by the compatibility or continuity conditions. The mapping technique is used to transform both the governing differential equations and the compatibility conditions between two adjacent sub-domains into the regular master element in the computational space. The numerical implementation of the global algebraic system obtained by the technique at issue is easy and straightforward. The main novelty of this paper is the application of the stress and strain recovery once the displacement parameters are evaluated. Computer investigations concerning a large number of composite plates have been carried out. SFEM results are compared with those presented in literature and a perfect agreement is observed.

Keywords

References

  1. Bert, C.W., Jang, S.K. and Striz, A.G. (1988), "Two new approximate methods for analyzing free vibration of structural components", AIAA J., 26(5), 612-618. https://doi.org/10.2514/3.9941
  2. Bert, C.W., Jang, S.K. and Striz, A.G. (1989), "Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature", Comput. Mech., 5(2-3), 217-226. https://doi.org/10.1007/BF01046487
  3. Bert, C.W. and Malik, M. (1996a), "Differential quadrature method in computational mechanics", Appl. Mech. Rev., 49(1), 1-28. https://doi.org/10.1115/1.3101882
  4. Bert, C.W. and Malik, M. (1996b), "The differential quadrature method for irregular domains and application to plate vibration", Int. J. Mech. Sci., 38(6), 589-606. https://doi.org/10.1016/S0020-7403(96)80003-8
  5. Boyd, J.P. (2001), Chebyshev and Fourier spectral methods, Dover Publications, N.Y.
  6. Canuto, C., Hussaini M.Y., Quarteroni, A. and Zang, T.A. (2006), Spectral method: fundamentals in single domains, Springer.
  7. Canuto, C., Hussaini M.Y., Quarteroni, A. and Zang, T.A. (2007), Spectral method: evolution to complex geometries and applications to fluid dynamics, Springer.
  8. Carrera, E., Pagani, A. and Petrolo, M. (2013), "Use of lagrange multipliers to combine 1D variable kinematic finite elements", Comput. Struct., 129, 194-206. https://doi.org/10.1016/j.compstruc.2013.07.005
  9. Carrera, E. and Pagani, A. (2013), "Analysis of reinforced and thin-walled structures by multi-line refined 1D/beam models", Int. J. Mech. Sci., 75, 278-287. https://doi.org/10.1016/j.ijmecsci.2013.07.010
  10. Carrera, E. and Pagani, A. (2014), "Multi-line enhanced beam model for the analysis of laminated composite structures", Compos. Part B-Eng., 57, 112-119. https://doi.org/10.1016/j.compositesb.2013.09.046
  11. Chen, C.N. (2003a), "Buckling equilibrium equations of arbitrarily loaded nonprismatic composite beams and the DQEM buckling analysis using EDQ", Appl. Math. Model., 27(1), 27-46. https://doi.org/10.1016/S0307-904X(02)00084-7
  12. Chen, C.N. (2003b), "DQEM and DQFDM for the analysis of composite two-dimensional elasticity problems", Compos. Struct., 59(1), 3-13. https://doi.org/10.1016/S0263-8223(02)00231-3
  13. Chen, C.N. (2004), "DQEM and DQFDM irregular elements for analyses of 2-D heat conduction in orthotropic media", Appl. Math. Model., 28(7), 617-638. https://doi.org/10.1016/j.apm.2003.10.015
  14. Chen, C.N. (2006), discrete element analysis methods of generic differential quadratures, Springer Berlin Heidelberg.
  15. Civan, F. and Sliepcevich, C.M. (1983a), "Application of differential quadrature to transport processes", J. Math. Anal. Appl., 93(1), 206-221. https://doi.org/10.1016/0022-247X(83)90226-3
  16. Civan, F. and Sliepcevich, C.M. (1983b), "Solution of poisson equation by differential quadrature", Int. J. Numer. Methods Eng., 19(5), 711-724. https://doi.org/10.1002/nme.1620190506
  17. Civan, F. and Sliepcevich, C.M. (1984), "Differential quadrature for multi-dimensional problems", J. Math. Anal. Appl., 101(2), 423-443. https://doi.org/10.1016/0022-247X(84)90111-2
  18. Civan, F. and Sliepcevich, C.M. (1985), "Application of differential quadrature in solution of pool boiling in cavities", Proc. Oklahoma Acad. Sci., 65, 73-78.
  19. Fantuzzi, N. (2013), "Generalized differential quadrature finite element method applied to advanced structural mechanics", Ph. D. Thesis, University of Bologna.
  20. Fantuzzi, N., Tornabene, F. and Viola, E. (2014), "Generalized differential quadrature finite element method for vibration analysis of arbitrarily shaped membranes", Int. J. Mech. Sci., 79, 216-251. https://doi.org/10.1016/j.ijmecsci.2013.12.008
  21. Ferreira, A.J.M., Viola, E., Tornabene, F., Fantuzzi, N. and Zenkour, A.M. (2013), "Analysis of sandwich plates by generalized differential quadrature method", Math. Probl. Eng., 2013, 1-12, Article ID 964367, http://dx.doi.org/10.1155/2013/964367.
  22. Ferreira, A.J.M., Carrera, E., Cinefra, M., Viola, E., Tornabene, F., Fantuzzi, N. and Zenkour, A.M. (2014), "Analysis of thick isotropic and cross-ply laminated plates by generalized differential quadrature method and a unified formulation", Compos. Part B-Eng., 58(1), 544-552. https://doi.org/10.1016/j.compositesb.2013.10.088
  23. Gottlieb, D. and Orszag, S.A. (1977), Numerical analysis of spectral methods: theory and applications, CBMSNSF, SIAM.
  24. Han, J.B. and Liew, K.M. (1997), "An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates", Comp. Meth. Appl. Mech. Eng., 141(3-4), 265-280. https://doi.org/10.1016/S0045-7825(96)01115-2
  25. Liew, K.M. and Han, J.B. (1997), "A four-node differential quadrature method for straight-sided quadrilateral Reissner/Mindlin plates", Commun. Numer. Meth. En., 13(2), 73-81. https://doi.org/10.1002/(SICI)1099-0887(199702)13:2<73::AID-CNM32>3.0.CO;2-W
  26. Liew, K.M., Wang, C.M., Xiang, Y. and Kitipornchai, S. (1998), Vibration of Mindlin plates, Elsevier.
  27. Leissa, A.W. (1993), Vibration of plates, Acoustical Society of America.
  28. Liu, F.L. (1998), "Static analysis of Reissner-Mindlin plates by differential quadrature element method", J. Appl. Mech-T. ASME, 65(3), 705-710. https://doi.org/10.1115/1.2789114
  29. Liu, F.L. (1999), "Differential quadrature element method for static analysis of shear deformable cross-ply laminates", Int. J. Numer. Meth. Eng., 46(8), 1203-1219. https://doi.org/10.1002/(SICI)1097-0207(19991120)46:8<1203::AID-NME744>3.0.CO;2-V
  30. Liu, F.L. and Liew, K.M. (1999), "Differential quadrature element method: a new approach for free vibration of polar Mindlin plates having discontinuities", Comp. Meth. Appl. Mech. Eng., 179(3-4), 407-423. https://doi.org/10.1016/S0045-7825(99)00049-3
  31. Liu, F.L. (2000), "Static analysis of thick rectangular laminated plates: three-dimensional elasticity solutions via differential quadrature element method", Int. J. Solids Struct., 37(51), 7671-7688. https://doi.org/10.1016/S0020-7683(99)00300-5
  32. Marzani, A., Tornabene, F. and Viola, E. (2008), "Nonconservative stability problems via generalized differential quadrature method", J. Sound Vib., 315(1-2), 176-196. https://doi.org/10.1016/j.jsv.2008.01.056
  33. Ostachowicz, W., Kudela, P., Krawczuk, M. and Zak, A. (2011), Guided waves in structures for SHM: the time-domain spectral element method, John Wiley & Sons.
  34. Orszag, S.A. (1969), "Numerical methods for the simulation of turbulence", Phys. Fluids Suppl. II, 12(12), 250-257. https://doi.org/10.1063/1.1692279
  35. Orszag, S.A. (1980), "Spectral methods for problems in complex geometries", J. Comput. Phys., 37(1), 70-92. https://doi.org/10.1016/0021-9991(80)90005-4
  36. Pagani, A., Boscolo, M., Banerjee, J.R. and Carrera, E. (2013), "Exact dynamic stiffness elements based on one-dimensional higher-order theories for free vibration analysis of solid and thin-walled structures", J. Sound Vib., 332(23), 6104-6127. https://doi.org/10.1016/j.jsv.2013.06.023
  37. Pagani, A., Carrera, E., Boscolo, M. and Banerjee, J.R. (2014), "Refined dynamic stiffness elements applied to free vibration analysis of generally laminated composite beams with arbitrary boundary conditions", Compos. Struct., 110, 305-316. https://doi.org/10.1016/j.compstruct.2013.12.010
  38. Patera, A.T. (1984), "A spectral element method for fluid dynamics: laminar flow in a channel expansion", J. Comput. Phys., 54(3), 468-488. https://doi.org/10.1016/0021-9991(84)90128-1
  39. Quan, J.R. and Chang, C.T. (1989a), "New insights in solving distributed system equations by the quadrature method - I. Analysis", Comput. Chem. Eng., 13(7), 779-788. https://doi.org/10.1016/0098-1354(89)85051-3
  40. Quan, J.R. and Chang, C.T. (1989b), "New insights in solving distributed system equations by the quadrature method - II. numerical experiments", Comput. Chem. Eng., 13(9), 1017-1024. https://doi.org/10.1016/0098-1354(89)87043-7
  41. Reddy, J.N. (1999), Theory and analysis of elastic plates, Taylor & Francis.
  42. Shu, C. and Richards, B.E. (1992a), "Parallel simulation of incompressible viscous flows by generalized differential quadrature", Comput. Syst. Eng., 3(1-4), 271-281. https://doi.org/10.1016/0956-0521(92)90112-V
  43. Shu, C. and Richards, B.E. (1992b), "Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations", Int. J. Numer. Meth. Fl., 15(7), 791-798. https://doi.org/10.1002/fld.1650150704
  44. Shu, C. and Xue, H. (1999), "Solution of Helmholtz by differential quadrature method", Comp. Meth. Appl. Mech. Eng., 175(1-2), 203-212. https://doi.org/10.1016/S0045-7825(98)00370-3
  45. Shu, C. (2000), Differential quadrature and its application in engineering, Springer.
  46. Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of plates and shells, McGraw-Hill.
  47. Tornabene, F. and Viola, E. (2007), "Vibration analysis of spherical structural elements using the GDQ method", Comp. Math. Appl., 53(10), 1538-1560. https://doi.org/10.1016/j.camwa.2006.03.039
  48. Tornabene, F. and Viola, E. (2008), "2-D solution for free vibrations of parabolic shells using generalized differential quadrature method", Eur. J. Mech. A-Solid, 27(6), 1001-1025. https://doi.org/10.1016/j.euromechsol.2007.12.007
  49. Tornabene, F. (2009), "Vibration analysis of functionally graded conical, cylindrical and annular shell structures with a four-parameter power-law distribution", Comp. Meth. Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011
  50. Tornabene, F. and Viola, E. (2009a), "Free vibrations of four-parameter functionally graded parabolic panels and shell of revolution", Eur. J. Mech. A-Solid, 28(5), 991-1013. https://doi.org/10.1016/j.euromechsol.2009.04.005
  51. Tornabene, F. and Viola, E. (2009b), "Free vibration analysis of functionally graded panels and shells of revolution", Meccanica, 44(3), 255-281. https://doi.org/10.1007/s11012-008-9167-x
  52. Tornabene, F., Viola, E. and Inman, D.J. (2009), "2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical and annular shell structures", J. Sound Vib., 328(3), 259-290. https://doi.org/10.1016/j.jsv.2009.07.031
  53. Tornabene, F., Marzani, A., Viola, E. and Elishakoff, I. (2010), "Critical flow speeds of pipes conveying fluid by the generalized differential quadrature method", Adv. Theor. Appl. Mech., 3(3), 121-138.
  54. Tornabene, F. (2011a), "2-D GDQ solution for free vibrations of anisotropic doubly-curved shells and panels of revolution", Compos. Struct., 93(7), 1854-1876. https://doi.org/10.1016/j.compstruct.2011.02.006
  55. Tornabene, F. (2011b), "Free vibrations of anisotropic doubly-curved shells and panels of revolution with a free-form meridian resting on Winkler-Pasternak elastic foundations", Compos. Struct., 94(1), 186-206. https://doi.org/10.1016/j.compstruct.2011.07.002
  56. Tornabene, F. (2011c), "Free vibrations of laminated composite doubly-curved shells and panels of revolution via the GDQ method", Comp. Meth. Appl. Mech. Eng., 200(9-12), 931-952. https://doi.org/10.1016/j.cma.2010.11.017
  57. Tornabene, F., Liverani, A. and Caligiana, G. (2011), "FGM and laminated doubly-curved shells and panels of revolution with a free-form meridian: a 2-D GDQ solution for free vibrations", Int. J. Mech. Sci., 53(6), 446-470. https://doi.org/10.1016/j.ijmecsci.2011.03.007
  58. Tornabene, F. (2012), Meccanica delle Strutture a Guscio in Materiale Composito, Esculapio, Bologna.
  59. Tornabene, F., Liverani, A. and Caligiana, G. (2012a), "General anisotropic doubly-curved shell theory: a differential quadrature solution for free vibrations of shells and panels of revolution with a free-form meridian", J. Sound Vib., 331(22), 4848-4869. https://doi.org/10.1016/j.jsv.2012.05.036
  60. Tornabene, F., Liverani, A. and Caligiana, G. (2012b), "Laminated composite rectangular and annular plates: a GDQ solution for static analysis with a posteriori shear and normal stress recovery", Compos. Part B-Eng., 43(4), 1847-1872. https://doi.org/10.1016/j.compositesb.2012.01.065
  61. Tornabene, F., Liverani, A. and Caligiana, G. (2012c), "Static analysis of laminated composite curved shells and panels of revolution with a posteriori shear and normal stress recovery using generalized differential quadrature method", Int. J. Mech. Sci., 61(1), 71-87. https://doi.org/10.1016/j.ijmecsci.2012.05.007
  62. Tornabene, F. and Ceruti, A. (2013a), "Free-form laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations: a 2-D GDQ solution for static and free vibration analysis", World J. Mech., 3(1), 1-25.
  63. Tornabene, F. and Ceruti, A. (2013b), "Mixed static and dynamic optimization of four-parameter functionally graded completely doubly-curved and degenerate shells and panels using GDQ method", Math. Probl. Eng., 2013, 1-33, Article ID 867089, http://dx.doi.org/10.1155/2013/867079.
  64. Tornabene, F., Fantuzzi, N., Viola, E. and Ferreira, A.J.M. (2013a), "Radial basis function method applied to doubly-curved laminated composite shells and panels with a general higher-order equivalent single layer theory", Compos. Part B-Eng., 55(1), 642-659. https://doi.org/10.1016/j.compositesb.2013.07.026
  65. Tornabene, F. and Reddy, J.N. (2013), "FGM and laminated doubly-curved and degenerate shells resting on nonlinear elastic foundation: a GDQ solution for static analysis with a posteriori stress and strain recovery", J. Indian Inst. Sci., 93(4), 635-688.
  66. Tornabene, F. and Viola, E. (2013), "Static analysis of functionally graded doubly-curved shells and panels of revolution", Meccanica, 48(4), 901-930. https://doi.org/10.1007/s11012-012-9643-1
  67. Tornabene, F., Viola, E. and Fantuzzi, N. (2013b), "General higher-order equivalent single layer theory for free vibrations of doubly-curved laminated composite shells and panels", Compos. Struct., 104, 94-117. https://doi.org/10.1016/j.compstruct.2013.04.009
  68. Tornabene, F. and Fantuzzi, N. (2014), Mechanics of laminated composite doubly-curved shell structures, Esculapio, Bologna.
  69. Tornabene, F., Fantuzzi, N., Viola, E. and Carrera, E. (2014a), "Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method", Compos. Struct., 107(1), 675-697. https://doi.org/10.1016/j.compstruct.2013.08.038
  70. Tornabene, F., Fantuzzi, N., Viola, E. and Reddy, J.N. (2014b), "Winkler-Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels", Compos. Part B-Eng., 57(1), 269-296. https://doi.org/10.1016/j.compositesb.2013.06.020
  71. Wang, X.W., Wang, Y.L. and Chen, R.B. (1998), "Static and free vibrational analysis of rectangular plates by the differential quadrature element method", Commun. Numer. Meth. En., 14(12), 1133-1141. https://doi.org/10.1002/(SICI)1099-0887(199812)14:12<1133::AID-CNM213>3.0.CO;2-Q
  72. Wang, Y., Wang, X. and Zhou, Y. (2004), "Static and free vibration analyses of rectangular plates by the new version of the differential quadrature element method", Int. J. Numer. Methods Eng., 59(9), 1207-1226. https://doi.org/10.1002/nme.913
  73. Viola, E. and Tornabene, F. (2005), "Vibration analysis of damaged circular arches with varying cross-section", Struct. Integr. Durab. (SID-SDHM), 1(2), 155-169.
  74. Viola, E. and Tornabene, F. (2006), "Vibration analysis of conical shell structures using GDQ method", Far East J. Appl. Math., 25(1), 23-39.
  75. Viola, E., Dilena, M. and Tornabene, F. (2007), "Analytical and numerical results for vibration analysis of multi-stepped and multi-damaged circular arches", J. Sound Vib., 299(1-2), 143-163. https://doi.org/10.1016/j.jsv.2006.07.001
  76. Viola, E. and Tornabene, F. (2009), "Free vibrations of three parameter functionally graded parabolic panels of revolution", Mech. Res. Commun., 36(5), 587- 594. https://doi.org/10.1016/j.mechrescom.2009.02.001
  77. Viola, E., Rossetti, L. and Fantuzzi, N. (2012), "Numerical investigation of functionally graded cylindrical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery", Compos. Struct., 94(12), 3736-3758. https://doi.org/10.1016/j.compstruct.2012.05.034
  78. Viola, E., Tornabene, F. and Fantuzzi, N. (2013a), "Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape", Compos. Struct., 106(1), 815-834. https://doi.org/10.1016/j.compstruct.2013.07.034
  79. Viola, E., Tornabene, F. and Fantuzzi, N. (2013b), "Static analysis of completely doubly-curved laminated shells and panels using general higher-order shear deformation theories", Compos. Struct., 101, 59-93. https://doi.org/10.1016/j.compstruct.2013.01.002
  80. Viola, E., Tornabene, F. and Fantuzzi, N. (2013c), "General higher-order shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels", Compos. Struct., 95, 639-666. https://doi.org/10.1016/j.compstruct.2012.08.005
  81. Viola, E., Tornabene, F., Ferretti, E. and Fantuzzi, N. (2013d), "Soft core plane state structures under static loads using GDQFEM and cell method", CMES-Comp. Model. Eng., 94(4), 301-329.
  82. Viola, E., Tornabene, F., Ferretti, E. and Fantuzzi, N. (2013e), "GDQFEM numerical simulations of continuous media with cracks and discontinuities", CMES-Comp. Model. Eng., 94(4), 331-369.
  83. Viola, E., Tornabene, F., Ferretti, E. and Fantuzzi, N. (2013f), "On static analysis of composite plane state structures via GDQFEM and cell method", CMES-Comp. Model. Eng., 94(5), 421-458.
  84. Zhong, H. and He, Y. (1998), "Solution of Poisson and Laplace equations by quadrilateral quadrature element", Int. J. Solids Struct., 35(21), 2805-2819. https://doi.org/10.1016/S0020-7683(97)00277-1
  85. Zhong, H. and He, Y. (2003), "A note on incorporation of domain decomposition into the differential quadrature method", Commun. Numer. Meth. En., 19(4), 297-306. https://doi.org/10.1002/cnm.591
  86. Zhong, H., Pan, C. and Yu, H. (2011), "Buckling analysis of shear deformable plates using the quadrature element method", Appl. Math. Model., 35(10), 5059-5074. https://doi.org/10.1016/j.apm.2011.04.030
  87. Zong, Z. and Zhang, Y. (2009), Advanced differential quadrature methods, CRC Press.
  88. Zong, Z., Lam, K.Y. and Zhang, Y.Y. (2005), "A multi-domain differential quadrature approach to plane elastic problems with material discontinuity", Math. Comput. Model., 41(4-5), 539-553. https://doi.org/10.1016/j.mcm.2003.11.009

Cited by

  1. Mixed-Dimensional Coupling for Parallel Partitioned Nonlinear Finite-Element Analysis vol.31, pp.3, 2017, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000633
  2. Optimization of flutter boundaries of cantilevered trapezoidal functionally graded sandwich plates 2017, https://doi.org/10.1177/1099636217697492
  3. Buckling analysis of composite panels and shells with different material properties by discrete singular convolution (DSC) method vol.161, 2017, https://doi.org/10.1016/j.compstruct.2016.10.077
  4. Free vibration analysis of soft-core sandwich beams by the novel weak form quadrature element method vol.18, pp.3, 2016, https://doi.org/10.1177/1099636215601373
  5. Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods vol.183, 2018, https://doi.org/10.1016/j.compstruct.2016.11.051
  6. Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method vol.111, 2017, https://doi.org/10.1016/j.compositesb.2016.11.030
  7. A strong formulation finite element method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape vol.49, pp.10, 2014, https://doi.org/10.1007/s11012-014-0014-y
  8. Stability and accuracy of three Fourier expansion-based strong form finite elements for the free vibration analysis of laminated composite plates vol.111, pp.4, 2017, https://doi.org/10.1002/nme.5468
  9. Four-parameter functionally graded cracked plates of arbitrary shape: A GDQFEM solution for free vibrations vol.23, pp.1, 2016, https://doi.org/10.1080/15376494.2014.933992
  10. Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method vol.52, 2015, https://doi.org/10.1016/j.euromechsol.2015.02.004
  11. A new component mode synthesis for dynamic mixed thin plate finite element models vol.86, pp.5, 2016, https://doi.org/10.1007/s00419-015-1072-x
  12. Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates 2017, https://doi.org/10.1177/1099636217728746
  13. A simple and accurate mixed Ritz-DQM formulation for free vibration of rectangular plates involving free corners vol.7, pp.2, 2016, https://doi.org/10.1016/j.asej.2015.05.016
  14. Vibration of laminated composite panels and curved plates with different types of FGM composite constituent vol.122, 2017, https://doi.org/10.1016/j.compositesb.2017.04.012
  15. Element differential method for solving general heat conduction problems vol.115, 2017, https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.039
  16. Optimization for flutter boundaries of cantilevered trapezoidal thick plates vol.39, pp.5, 2017, https://doi.org/10.1007/s40430-016-0688-2
  17. Various double component mode synthesis and sub-structuring methods for dynamic mixed FEM vol.53, 2015, https://doi.org/10.1016/j.euromechsol.2015.04.005
  18. Strong Formulation IsoGeometric Analysis for the vibration of thin membranes of general shape vol.120, 2017, https://doi.org/10.1016/j.ijmecsci.2016.10.033
  19. Static analysis of higher order sandwich beams by weak form quadrature element method vol.116, 2014, https://doi.org/10.1016/j.compstruct.2014.06.015
  20. Nonlinear dynamic analysis and vibration of shear deformable piezoelectric FGM double curved shallow shells under damping-thermo-electro-mechanical loads vol.125, 2015, https://doi.org/10.1016/j.compstruct.2015.01.041
  21. Discrete singular convolution method for the free vibration analysis of rotating shells with different material properties vol.160, 2017, https://doi.org/10.1016/j.compstruct.2016.10.031
  22. Numerical approaches for vibration response of annular and circular composite plates vol.29, pp.6, 2018, https://doi.org/10.12989/scs.2018.29.6.759
  23. Vibration of angle-ply laminated composite circular and annular plates vol.34, pp.1, 2020, https://doi.org/10.12989/scs.2020.34.1.141
  24. Local least-squares element differential method for solving heat conduction problems in composite structures vol.77, pp.6, 2020, https://doi.org/10.1080/10407790.2020.1746584
  25. Discontinuous zone free element method with variable condensation and applications in thermal-stress analysis of functionally graded material structures with cracks vol.243, pp.None, 2014, https://doi.org/10.1016/j.compstruc.2020.106411