DOI QR코드

DOI QR Code

The Calculation and Design Method of Active Earth Pressure with Type of Gravity Structures

중력식 구조물의 형태에 따른 주동토압 산정과 설계법 제안

  • 김병일 ((주)지구환경전문가그룹 기술연구소) ;
  • 정영진 ((주)알지오이엔씨) ;
  • 김도형 ((주)지구환경전문가그룹 기술연구소) ;
  • 이충호 ((주)알지오이엔씨) ;
  • 한상재 ((주)지구환경전문가그룹)
  • Received : 2013.10.28
  • Accepted : 2014.03.31
  • Published : 2014.04.30

Abstract

In this study theories of earth pressure such as Rankine, Coulomb, Trial Wedge, Improved Trial Wedge, used in the design for onshore and offshore structures, are analyzed and the characteristics of loaded pressure to virtual back (wall, plane) and wall surface in accordance with the structure type are suggested. To investigate characteristics of earth pressure, gravity retaining wall with inclined angle and cantilever wall with inclined ground are movilized for onshore structures and caisson and block type quay wall are mobilized for offshore structures. Based on various theories, the earth pressure applied angle(wall friction angle) and sliding angle toward the wall, which is influenced by the heel length, are calculated and compared. In the case of long heel, the pressure by Rankine's method in virtual plane and the mobilized angle are most reasonably estimated by the ground slope, and in the case of short heel, the pressure by Coulomb's method and the mobilized angle by the angle of wall friction. In addition, the sliding angle toward the wall estimated by the improved trial wedge method is large than the value of Rankine's method. Finally, in this study the reasonable method for calculating the pressure and the mobilized angle that can be applied to the routine design of port structures is proposed. The proposed method can decide the earth pressure with length of a heel and a self weight of retaining wall according to sliding angle toward the wall.

육상 및 항만 구조물 설계시 적용되고 있는 토압 이론(Rankine, Coulomb, 시행쐐기법, 개량시행쐐기법)을 정리하였고, 구조물 형태에 따라 가상배면(Vitural back, wall, plane)과 구조물 벽면에 작용하는 토압 특성 등을 제시하였다. 토압 특성을 검토하기 위해 육상구조물의 경우 배면토 경사에 따른 캔틸레버식 옹벽과 벽경사에 따른 중력식 옹벽, 해상구조물은 케이슨식 안벽과 블록식 안벽을 적용하였다. 여러 가지 토압이론을 적용하여 뒷굽 길이에 따른 토압, 작용각(벽면마찰각), 벽면측으로의 활동각 등을 분석한 결과 뒷굽이 긴 경우 가상배면에서의 작용토압은 Rankine 토압과 작용각은 지표경사각, 뒷굽이 짧은 경우 Coulomb 방법과 작용각은 벽마찰각으로 산정하는 것이 가장 합리적임을 알 수 있었다. 벽면측으로의 활동각은 Rankine 이론에 의한 활동각보다 큰 것으로 나타났다. 또한, 본 논문에서는 현재 적용되고 있는 여러 가지 토압 산정법 및 작용각 중에서 항만 구조물 설계시 적용할 수 있는 적정 토압 산정방법을 제안하였다. 제안방법은 뒷굽장단 결정과 이에 따른 적정 토압산정법을 결정하고 벽면 측으로의 활동각에 따른 옹벽자중 고려 방법을 설정하도록 하였다.

Keywords

References

  1. Ministry of Construction and Transportation (2000), "Hightway Bridge Design Code".
  2. Kim, S.K. (1992), "Earth Pressure Acting on a Retaining Wall and Abutment", Conference of Korean Society of Civil Engineers, 159('92.2), pp.46-54.
  3. Korean Society of Civil Engineers, Korea Bridge Design & Engineering Research Center (2008), "Hightway Bridge Design Code Explanation".
  4. Paik, Y. S. (2011), "Soil Mechanics to Lecture", Kumi, Inc.
  5. Oh, J. H. (1999), "Design and Construction of Earth Strucutres", Engineers, Inc.
  6. Chae, Y. S. and Park, M. S. (1993), "A Study of the Stability of Cantilever Retaining Wall due to the Lateral Earth Pressure Acting oo Virtual Surface of Backfill", Journal of Korean Society of Civil Engineers, pp.461-464
  7. Korean Geotechnical Soiciety (2009), "Structure Foundation Design Code Explanation".
  8. Ministry of Oceans and Fisheries (2005), "Harbor and Fishing Port Design Code".
  9. Ushiro T, Tsutsui H., and Kataoka H. (1991a), "Study on earth pressure evaluation method of reverse T-shaped retaining wall", Geotechnical Research Society 3rd workshop at Kochi Hyun, pp.44-47.
  10. Ushiro T, Tsutsui H., Kataoka H., Okura M., and Jushi N. (1991b), "A proposal on the earth pressure evaluation method of reverse T-shaped retaining wall", Technical Research Conference, Soil Mechanics Society at Sikoku, pp.39-40
  11. Ushiro T., Nisimura H. (2009), "Application of theory to the Coulomb cantilevered retaining wall", Technical Research Conference, Soil Mechanics Society at Sikoku.
  12. Azizi, F. (2000), "Applied analyses in geotechnics", E & FN SPON.
  13. Barghouthi, A. F. (1990), "Active earth pressure on walls with base projection", Journal of Geotechnical Engineering, Vol.116, No.10, pp.1570-1575. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:10(1570)
  14. Broms, B.B. and Ingleson, I. (1971), "Earth pressure against the abutments of a rigid frame bridge", Geotechnique, Vol.21, No.1, pp.15-28. https://doi.org/10.1680/geot.1971.21.1.15
  15. Das, B. M. (2001), "Principles of foundation engineering", Jones and Bartlett publishers.
  16. Greco, V. R. (2001), "Active earth thrust on cantilever walls with short heel", Canadian Geotechnical Journal 38(2), pp.401-409. https://doi.org/10.1139/t00-094
  17. Hong Kong GEO (1982), "Guide to retaining wall design".
  18. Duncan, J. M., Clough, G. W., and Ebeling, R. E., "Design and Preformance of Earth Retaining Structures", ASCE Geot. Spec. Publ., No.25, pp.251-278.
  19. Rowe, P. W. and Peaker, K. (1965), "Passive earth pressure measurements", Geotechnique, Vol.15, pp.57-78. https://doi.org/10.1680/geot.1965.15.1.57
  20. Teng (1962), "Foundation design", Prentice-Hall Inc.
  21. Terzaghi, K. (1943), "Theoretical soil mechanics", John Wiley & Sons, Inc.
  22. Terzaghi, K. and Peck, R. B. (1967), "soil mechanics in engineering practice", 2nd edn.. John Wiley, New York, London, Sydney.

Cited by

  1. Study on Earth Pressure Acting Against Caisson Structure with the Heel vol.29, pp.2, 2017, https://doi.org/10.9765/KSCOE.2017.29.2.67