References
- Alfano, M., Graziano, F., Genovese, L., and Poli, G. (2013). Macrophage polarization at the crossroad between HIV-1 infection and cancer development. Arterioscler. Throm. Vas. Biol. 33, 1145-1152. https://doi.org/10.1161/ATVBAHA.112.300171
- Arranz, A., Doxaki, C., Vergadi, E., de la Torre, Y.M., Vaporidi, K., Lagoudaki, E.D., Ieronymaki, E., Androulidaki, A., Venihaki, M., Margioris, A.N., et al. (2012). Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc. Natl. Acad. Sci. USA 109, 9517-9522. https://doi.org/10.1073/pnas.1119038109
- Avdic, S., Cao, J.Z., McSharry, B.P., Clancy, L.E., Brown, R., Steain, M., Gottlieb, D., Abendroth, A., and Slobedman, B. (2013). Human cytomegalovirus interleukin-10 polarizes monocytes toward a deactivated M2c phenotype to repress host immune responses. J. Virol. 87, 10273-1082. https://doi.org/10.1128/JVI.00912-13
- Beck, A.H., Espinosa, I., Edris, B., Li, R., Montgomery, K., Zhu, S., Varma, S., Marinelli, R.J., van de Rijn, M., and West, R.B. (2009). The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clin. Cancer Res. 15, 778-787. https://doi.org/10.1158/1078-0432.CCR-08-1283
- Benoit, M., Desnues, B., and Mege, J.-L. (2008). Macrophage polarization in bacterial infections. J. Immunol. 181, 3733-3739. https://doi.org/10.4049/jimmunol.181.6.3733
- Bieghs, V., Wouters, K., van Gorp, P.J., Gijbels, M.J.J., de Winther, M.P.J., Binder, C.J., Lutjohann, D., Febbraio, M., Moore, K.J., van Bilsen, M., et al. (2010). Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice. Gastroenterology 138, 2477-2486, 2486.e1-e3. https://doi.org/10.1053/j.gastro.2010.02.051
- Biswas, S.K., and Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889-896. https://doi.org/10.1038/ni.1937
- Biswas, S.K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., Bottazzi, B., Doni, A., Vincenzo, B., Pasqualini, F., et al. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107, 2112-22. https://doi.org/10.1182/blood-2005-01-0428
- Biswas, S.K., Sica, A., and Lewis, C.E. (2008). Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J. Immunol. 180, 2011-2017. https://doi.org/10.4049/jimmunol.180.4.2011
- Bradshaw, E.M., Raddassi, K., Elyaman, W., Orban, T., Gottlieb, P. A., Kent, S.C., and Hafler, D.A. (2009). Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. J. Immunol. 183, 4432-4439. https://doi.org/10.4049/jimmunol.0900576
- Burke, A.P., Kolodgie, F.D., Zieske, A., Fowler, D.R., Weber, D.K., Varghese, P.J., Farb, A., and Virmani, R. (2004). Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler. Throm. Vas. Biol. 24, 1266-1271. https://doi.org/10.1161/01.ATV.0000131783.74034.97
- Byles, V., Covarrubias, A.J., Ben-Sahra, I., Lamming, D.W., Sabatini, D.M., Manning, B.D., and Horng, T. (2013). The TSC-mTOR pathway regulates macrophage polarization. Nat. Commun. 4, 2834.
- Cassetta, L., Cassol, E., and Poli, G. (2011). Macrophage polarization in health and disease. ScientificWorldJournal 11, 2391-2402. https://doi.org/10.1100/2011/213962
- Cassetta, L., Kajaste-Rudnitski, A., Coradin, T., Saba, E., Della Chiara, G., Barbagallo, M., Graziano, F., Alfano, M., Cassol, E., Vicenzi, E., et al. (2013). M1 polarization of human monocytederived macrophages restricts pre and postintegration steps of HIV-1 replication. AIDS 27, 1847-1856. https://doi.org/10.1097/QAD.0b013e328361d059
- Cassol, E., Cassetta, L., Alfano, M., and Poli, G. (2010). Macrophage polarization and HIV-1 infection. J. Leukoc. Biol. 87, 599-608. https://doi.org/10.1189/jlb.1009673
- Cassol, E., Cassetta, L., Rizzi, C., Gabuzda, D., Alfano, M., and Poli, G. (2013). Dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin mediates HIV-1 infection of and transmission by M2a-polarized macrophages in vitro. AIDS 27, 707-716. https://doi.org/10.1097/QAD.0b013e32835cfc82
- Chacon-Salinas, R., Serafin-Lopez, J., Ramos-Payan, R., Mendez-Aragon, P., Hernandez-Pando, R., Van Soolingen, D., Flores- Romo, L., Estrada-Parra, S., and Estrada-Garcia, I. (2005). Differential pattern of cytokine expression by macrophages infected in vitro with different Mycobacterium tuberculosis genotypes. Clin. Exp. Immunol. 140, 443-449. https://doi.org/10.1111/j.1365-2249.2005.02797.x
- Chan, G., Bivins-Smith, E.R., Smith, M.S., Smith, P.M., and Yurochko, A.D. (2008). Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage. J. Immunol. 181, 698-711. https://doi.org/10.4049/jimmunol.181.1.698
- Chang, N.C., Hung, S.I., Hwa, K.Y., Kato, I., Chen, J.E., Liu, C.H., and Chang, A.C. (2001). A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J. Biol. Chem. 276, 17497-17506. https://doi.org/10.1074/jbc.M010417200
- Chihara, T., Hashimoto, M., Osman, A., Hiyoshi-Yoshidomi, Y., Suzu, I., Chutiwitoonchai, N., Hiyoshi, M., Okada, S., and Suzu, S. (2012). HIV-1 proteins preferentially activate anti-inflammatory M2-type macrophages. J. Immunol. 188, 3620-3627. https://doi.org/10.4049/jimmunol.1101593
- Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, M., Greenberg, A.S., and Obin, M.S. (2005). Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347-2355. https://doi.org/10.1194/jlr.M500294-JLR200
- Coscia, M., Quaglino, E., Iezzi, M., Curcio, C., Pantaleoni, F., Riganti, C., Holen, I., MOnkkOnen, H., Boccadoro, M., Forni, G., et al. (2010). Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J. Cell. Mol. Med. 14, 2803-2815. https://doi.org/10.1111/j.1582-4934.2009.00926.x
-
Coursey, T.G., Chen, P.W., and Niederkorn, J.Y. (2012). Abrogating TNF-
${\alpha}$ expression prevents bystander destruction of normal itssues diruing iNOS-mediated elimination of intraocular tumors. Cancer Res. 71, 2445-2454. - Csak, T., Ganz, M., Pespisa, J., Kodys, K., Dolganiuc, A., and Szabo, G. (2011). Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54, 133-144. https://doi.org/10.1002/hep.24341
- Daley, J.M., Brancato, S.K., Thomay, A.A., Reichner, J.S., and Albina, J.E. (2009). The phenotype of murine wound macrophages. J. Leukoc. Biol. 87, 59-67.
- Davies, L.C., Jenkins, S.J., Allen, J.E., and Taylor, P.R. (2013). Tissue-resident macrophages. Nat. Immunol. 14, 986-995. https://doi.org/10.1038/ni.2705
- Day, C.P., and James, O.F. (1998). Steatohepatitis: a tale of two "hits"? Gastroenterology 114, 842-845. https://doi.org/10.1016/S0016-5085(98)70599-2
- Devaraj, S., Glaser, N., Griffen, S., Wang-Polagruto, J., Miguelino, E., and Jialal, I. (2006). Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 55, 774-779. https://doi.org/10.2337/diabetes.55.03.06.db05-1417
-
Diao, Y., Xin, Y., Zhou, Y., Li, N., Pan, X., Qi, S., Qi, Z., Xu, Y., Luo, L., Wan, H., et al. (2013). Extracellular polysaccharide from Bacillus sp. strain LBP32 prevents LPS-induced inflammation in RAW 264.7 macrophages by inhibiting NF-
${\kappa}B$ and MAPKs activation and ROS production. Int. Immunopharmacol. 18, 12-19. - Donlan, R., and Costerton, J. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167-193. https://doi.org/10.1128/CMR.15.2.167-193.2002
- Duffield, J. (2005). Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56-65. https://doi.org/10.1172/JCI200522675
- Duluc, D., Corvaisier, M., Blanchard, S., Catala, L., Descamps, P., Gamelin, E., Ponsoda, S., Delneste, Y, Hebbar, M., and Jeannin, P. (2009). Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int. J. Cancer 125, 367-373. https://doi.org/10.1002/ijc.24401
- Dumont, P., Berton, A., Nagy, N., Sandras, F., Tinton, S., Demetter, P., Mascart, F., Allaoui, A., Decaestecker, C., and Salmon, I. (2008). Expression of galectin-3 in the tumor immune response in colon cancer. Lab. Invest. 88, 896-906. https://doi.org/10.1038/labinvest.2008.54
- Eguchi, J., Kong, X., Tenta, M., Wang, X., Kang, S., and Rosen, E. D. (2013). Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization. Diabetes 62, 3394-3403. https://doi.org/10.2337/db12-1327
-
Eisele, N.A, Ruby, T., Jacobson, A., Manzanillo, P.S., Cox, J.S., Lam, L., Mukundan, L., Chawla, A., and Monack, D.M. (2013). Salmonella require the fatty acid regulator PPAR
${\delta}$ for the establishment of a metabolic environment essential for long-term persistence. Cell Host Microbe 14, 171-182. https://doi.org/10.1016/j.chom.2013.07.010 - Farrell, G.C., Chitturi, S., Gan, L., and van Rooyen, D. (2012). NASH is an inflammatory disorder: pathogenic, prognostic and therapeutic implications. Gut Liver 6, 149-171. https://doi.org/10.5009/gnl.2012.6.2.149
- Fenyo, I.M., and Gafencu, A.V. (2013). The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis. Immunobiology 218, 1376-1384. https://doi.org/10.1016/j.imbio.2013.06.005
- Fletcher, N., Sutaria, R., Jo, J., and Barnes, A. (2013). Activated macrophages promote hepatitis C virus entry in a tumor necrosis factor-dependent manner. Hepatology (in press).
- Forster, S., Brandt, M., Mottok, D.S., Zschuttig, A., Zimmermann, K., Blattner, F.R., Gunzer, F., and POhlmann, C. (2013). Secretory expression of biologically active human Herpes virus interleukin-10 analogues in Escherichia coli via a modified Sec-dependent transporter construct. BMC Biotechnol., 13, 82. https://doi.org/10.1186/1472-6750-13-82
- Franks, T.J., Chong, P.Y., Chui, P., Galvin, J.R., Lourens, R.M., Reid, A.H., Selbs, E., Mcevoy, P.L., Hayden, D.L., Fukuoka, J., et al. (2003). Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum. Pathol. 34, 743-748. https://doi.org/10.1016/S0046-8177(03)00367-8
- Gadang, V., Kohli, R., Myronovych, A., Hui, D.Y., Perez-Tilve, D., and Jaeschke, A. (2013). MLK3 promotes metabolic dysfunction induced by saturated fatty acid-enriched diet. Am. J. Physiol. Endoc. Metab. 305, E549-556. https://doi.org/10.1152/ajpendo.00197.2013
- Gautier, E. L., Shay, T., Miller, J., Greter, M., Jakubzick, C., Ivanov, S., Helft, J., Chow, A., Elpek, K. G., Gordonov, S., et al. (2012). Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118-1128. https://doi.org/10.1038/ni.2419
- Ghavami, S., Shojaei, S., Yeganeh, B., Ande, S.R., Jangamreddy, J.R., Mehrpour, M., Christoffersson, J., Chaabane, W., Moghadam, A.R., Kashani, H.H., et al. (2014). Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol. 112, 24-49. https://doi.org/10.1016/j.pneurobio.2013.10.004
-
Gironella, M., Calvo, C., Fernandez, A., Closa, D., Iovanna, J.L., Rosello-Catafau, J., and Folch-Puy, E. (2013).
$Reg3{\beta}$ deficiency impairs pancreatic tumor growth by skewing macrophage polarization. Cancer Res. 73, 5682-5694. https://doi.org/10.1158/0008-5472.CAN-12-3057 - Gobeil, L.A., Lodge, R., and Tremblay, M.J. (2012). Differential HIV-1 endocytosis and susceptibility to virus infection in human macrophages correlate with cell activation status. J. Virol. 86, 10399-10407. https://doi.org/10.1128/JVI.01051-12
- Goh, Y.P.S., Chawla, A., and Nguyen, K.D. (2011). Macrophagemediated inflammation in metabolic disease. Nat. Rev. Immunol. 11, 738-749. https://doi.org/10.1038/nri3071
- Gomez Perdiguero, E., and Geissmann, F. (2013). Myb-independent macrophages: a family of cells that develops with their tissue of residence and is involved in its homeostasis. Cold Spring Harb. Symp. Quant. Biol. [Epub ahead of print].
- Gordon, S. (2003). Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23-35. https://doi.org/10.1038/nri978
-
Hajizadeh, M.R., Mokarram, P., Kamali-Sarvestani, E., Bolhassani, A., and Mostafavi-Pour, Z. (2013). Recombinant nonstructural 3 protein, rNS3, of hepatitis C virus along with recombinant GP96 induce IL-12,
$TNF{\alpha}$ and${\alpha}5$ integrin expression in antigen presenting cells. Hepat. Mon. 13, e8104. - Hanke, M.L., Heim, C.E., Angle, A., Sanderson, S.D., and Kielian, T. (2013). Targeting macrophage activation for the prevention and treatment of Staphylococcus aureus biofilm infections. J. Immunol. 190, 2159-2168. https://doi.org/10.4049/jimmunol.1202348
- Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W.Z., Strowig, T., Thaiss, C.A., Kau, A.L., Eisenbarth, S.C., Jurczak, M.J., et al. (2012). Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179-185.
- Henao-Mejia, J., Elinav, E., Thaiss, C.A., and Flavell, R.A. (2013). Inflammasomes and metabolic disease. Annu. Rev. Physiol. [Epub ahead of print].
- Heusinkveld, M., de Vos van Steenwijk, P.J., Goedemans, R., Ramwadhdoebe, T.H., Gorter, A., Welters, M.J.P., van Hall, T., and van der Burg, S.H. (2011). M2 macrophages induced by prosta-glandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. J. Immunol. 187, 1157-1165. https://doi.org/10.4049/jimmunol.1100889
- Heydtmann, M. (2009). Macrophages in hepatitis B and hepatitis C virus infections. J. Virol. 83, 2796-2802. https://doi.org/10.1128/JVI.00996-08
- Hotamisligil, G.S. (2006). Inflammation and metabolic disorders. Nature 444, 860-867. https://doi.org/10.1038/nature05485
- Hu, X., Chen, J., Wang, L., and Ivashkiv, L.B. (2007). Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J. Leukoc. Biol. 82, 237-243. https://doi.org/10.1189/jlb.1206763
- Huang, Z., Zhang, Z., Jiang, Y., Zhang, D., Chen, J., Dong, L., and Zhang, J. (2012). Targeted delivery of oligonucleotides into tumorassociated macrophages for cancer immunotherapy. J. Control Release 158, 286-292. https://doi.org/10.1016/j.jconrel.2011.11.013
- Hume, D.A. (2008). Differentiation and heterogeneity in the mononuclear phagocyte system. Mucosal Immunol. 1, 432-441. https://doi.org/10.1038/mi.2008.36
- Jenner, R.G., and Young, R.A. (2005). Insights into host responses against pathogens from transcriptional profiling. Nat. Rev. Microbiol. 3, 281-294. https://doi.org/10.1038/nrmicro1126
- Ji, W.J., Ma, Y.Q., Zhou, X., Zhang, Y.D., Lu, R.Y., Sun, H.Y., Guo, Z.Z., Zhang, Z., Li, Y.M., and Wei, L.Q. (2013). Temporal and spatial characterization of mononuclear phagocytes in circulating, lung alveolar and interstitial compartments in a mouse model of bleomycin-induced pulmonary injury. J. Immunol. Methods pii: S0022-1759(13)00328-1.
-
Jouanguy, E., DOffinger, R., Dupuis, S., Pallier, A., Altare, F., and Casanova, J.L. (1999). IL-12 and
$IFN-{\gamma}$ in host defense against mycobacteria and salmonella in mice and men. Curr. Opin. Immunol. 11, 346-351. https://doi.org/10.1016/S0952-7915(99)80055-7 - Kadl, A., Meher, A.K., Sharma, P.R., Lee, M.Y., Doran, A.C., Johnstone, S.R., Elliot, M.R., Gruber, F., Han, J., Chen, W., et al. (2010). Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Cir. Res. 107, 737-746. https://doi.org/10.1161/CIRCRESAHA.109.215715
- Kang, K., Reilly, S.M., Karabacak, V., Gangl, M.R., Fitzgerald, K., Hatano, B., and Lee, C.-H. (2008). Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 7, 485-495. https://doi.org/10.1016/j.cmet.2008.04.002
- Kanneganti, T.D., and Dixit, V.D. (2012). Immunological complications of obesity. Nat. Immunol. 13, 707-712. https://doi.org/10.1038/ni.2343
- Karlmark, K.R., Weiskirchen, R., Zimmermann, H.W., Gassler, N., Ginhoux, F., Weber, C., Merad, M., Luedde, T., Trautwein, C., and Tacke, F. (2009). Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50, 261-274. https://doi.org/10.1002/hep.22950
- Kiszewski, A.E., Becerril, E., Aguilar, L.D., Kader, I.T.A., Myers, W., Portaels, F., and Hernandez Pando, R. (2006). The local immune response in ulcerative lesions of Buruli disease. Clin. Exp. Immunol. 143, 445-451. https://doi.org/10.1111/j.1365-2249.2006.03020.x
- Klein, I., Cornejo, J.C., Polakos, N.K., John, B., Wuensch, S.A., Topham, D.J., Pierce, R.H., and Crispe, I.N. (2007). Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood 110, 4077-4085. https://doi.org/10.1182/blood-2007-02-073841
- Klimp, A.H., de Vries, E.G.E., Scherphof, G.L., and Daemen, T. (2002). A potential role of macrophage activation in the treatment of cancer. Crit. Rev. Oncol. Hematol. 44, 143-161. https://doi.org/10.1016/S1040-8428(01)00203-7
- Krausgruber, T., Blazek, K., Smallie, T., Alzabin, S., Lockstone, H., Sahgal, N., Hussell, T., Feldmann, M., and Udalova, I.A. (2011). IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12, 231-238. https://doi.org/10.1038/ni.1990
- Lavanchy, D. (2011). Evolving epidemiology of hepatitis C virus. Clin. Microbiol. Infect. 17, 107-115. https://doi.org/10.1111/j.1469-0691.2010.03432.x
- Lawrence, T., and Natoli, G. (2011). Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750-761. https://doi.org/10.1038/nri3088
- Leitinger, N., and Schulman, I.G. (2013). Phenotypic polarization of macrophages in atherosclerosis. Arterioscler. Throm. Vas. Biol. 33, 1120-1126. https://doi.org/10.1161/ATVBAHA.112.300173
- Leman, L.J., Maryanoff, B.E., and Ghadiri, M.R. (2013). Molecules that mimic apolipoprotein A-I: potential agents for treating Atherosclerosis. J. Med. Chem. (in press).
- Liao, X., Sharma, N., and Kapadia, F. (2011). Kruppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 121, 2736-2749. https://doi.org/10.1172/JCI45444
- Liu, H., Perlman, H., Pagliari, L.J., and Pope, R.M. (2001). Constitutively activated Akt-1 is vital for the survival of human monocyte-differentiated macrophages. Role of Mcl-1, independent of nuclear factor (NF)-kappaB, Bad, or caspase activation. J. Exp. Med. 194, 113-126. https://doi.org/10.1084/jem.194.2.113
- Liu, C.Y., Xu, J.Y., Shi, X.Y., Huang, W., Ruan, T.Y., Xie, P., and Ding, J.L. (2013). M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab. Invest. 93, 844-854. https://doi.org/10.1038/labinvest.2013.69
- Lugo-Villarino, G., Verollet, C., Maridonneau-Parini, I., and Neyrolles, O. (2011). Macrophage polarization: convergence point targeted by Mycobacterium tuberculosis and HIV. Front. Immunol. 2, 43.
- Lumeng, C.N., Bodzin, J.L., and Saltiel, A.R. (2007a). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175-184. https://doi.org/10.1172/JCI29881
- Lumeng, C.N., Deyoung, S.M., Bodzin, J.L., and Saltiel, A.R. (2007b). Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56, 16-23. https://doi.org/10.2337/db06-1076
- Luyendyk, J.P., Schabbauer, G.A., Tencati, M., Holscher, T., Pawlinski, R., and Mackman, N. (2008). Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages. J. Immunol. 180, 4218-4226. https://doi.org/10.4049/jimmunol.180.6.4218
- Majai, G., Kiss, E., Tarr, T., Zahuczky, G., Hartman, Z., Szegedi, G., and Fesus, L. (2014). Decreased apopto-phagocytic gene expression in the macrophages of systemic lupus erythematosus patients. Lupus 23, 133-145. https://doi.org/10.1177/0961203313511557
- Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., and Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677-686. https://doi.org/10.1016/j.it.2004.09.015
- Mantovani, A., Biswas, S.K., Galdiero, M.R., Sica, A., and Locati, M. (2013). Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176-185. https://doi.org/10.1002/path.4133
- Martinez, F.O., Sica, A., Mantovani, A., and Locati, M. (2008). Macrophage activation and polarization. Front. Biosci. 13, 453-461. https://doi.org/10.2741/2692
- Martinez, F.O., Helming, L., and Gordon, S. (2009). Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27, 451-483. https://doi.org/10.1146/annurev.immunol.021908.132532
- Mercalli, A., Calavita, I., Dugnani, E., Citro, A., Cantarelli, E., Nano, R., Melzi, R., Maffi, P., Secchi, A., Sordi, V., et al. (2013). Rapamycin unbalances the polarization of human macrophages to M1. Immunology 140, 179-190. https://doi.org/10.1111/imm.12126
- Mills, C.D., Kincaid, K., Alt, J.M., Heilman, M.J., and Hill, A.M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166-6173. https://doi.org/10.4049/jimmunol.164.12.6166
- Miura, K, Kodama, Y., Inokuchi, S., Schnabl, B., Aoyama, T., Ohnishi, H., Olefsky, J.M., Brenner, D.A., and Seki, E. (2010). Toll-Like Receptor 9 Promotes Steatohepatitis by Induction of Interleukin-1 beta in mice. Gastroenterology 139, 323-U453. https://doi.org/10.1053/j.gastro.2010.03.052
- Miura, K., Yang, L., van Rooijen, N., Ohnishi, H., and Seki, E. (2012). Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1310-G1321. https://doi.org/10.1152/ajpgi.00365.2011
- Miura, K., Yang, L., van Rooijen, N., Brenner, D.A., Ohnishi, H., and Seki, E. (2013). Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 57, 577-589. https://doi.org/10.1002/hep.26081
- Monini, P., Colombini, S., Sturzl, M., Goletti, D., Cafaro, A., Sgadari, C., Butto, S., Franco, M., Leone, P., Fais, S., et al. (1999). Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi's sarcoma. Blood 93, 4044-4058.
- Moreno, J.L., Kaczmarek, M., Keegan, A.D., and Tondravi, M. (2003). IL-4 suppresses osteoclast development and mature osteoclast function by a STAT6-dependent mechanism: irreversible inhibition of the differentiation program activated by RANKL. Blood 102, 1078-1086. https://doi.org/10.1182/blood-2002-11-3437
- Mosser, D. (2003). The many faces of macrophage activation. J. Leukoc. Biol. 73, 209-212. https://doi.org/10.1189/jlb.0602325
- Mosser, D.M., and Edwards, J.P. (2008). Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958-969. https://doi.org/10.1038/nri2448
- Murray, P.J., and Wynn, T.A. (2011). Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723-737. https://doi.org/10.1038/nri3073
- Mylonas, K.J., Nair, M.G., Prieto-Lafuente, L., Paape, D., and Allen, J.E. (2009). Alternatively activated macrophages elicited by helminth infection can be reprogrammed to enable microbial killing. J. Immunol. 182, 3084-3094. https://doi.org/10.4049/jimmunol.0803463
- Nau, G.J., Richmond, J.F.L., Schlesinger, A., Jennings, E.G., Lander, E.S., and Young, R.A. (2002). Human macrophage activation programs induced by bacterial pathogens. Proc. Natl. Acad. Sci. USA 99, 1503-1508. https://doi.org/10.1073/pnas.022649799
- Neyen, C., Mukhopadhyay, S., Gordon, S., and Hagemann, T. (2013). An apolipoprotein A-I mimetic targets scavenger receptor A on tumor-associated macrophages: a prospective anticancer treatment? Oncoimmunology 2, e24461. https://doi.org/10.4161/onci.24461
- Niino, D., Komohara, Y., Murayama, T., Aoki, R., Kimura, Y., Hashikawa, K., Kiyasu, J., Takeuchi, M., Suefuji, N., Sugita, Y., et al. (2010). Ratio of M2 macrophage expression is closely associated with poor prognosis for Angioimmunoblastic T-cell lymphoma (AITL). Pathol. Int. 60, 278-283. https://doi.org/10.1111/j.1440-1827.2010.02514.x
- Oberg, A., Samii, S., Stenling, R., and Lindmark, G. (2002). Different occurrence of CD8+, CD45R0+, and CD68+ immune cells in regional lymph node metastases from colorectal cancer as potential prognostic predictors. Int. J. Colorectal Dis. 17, 25-29. https://doi.org/10.1007/s003840100337
- Obstfeld, A.E., Sugaru, E., Thearle, M., Francisco, A.M., Gayet, C., Ginsberg, H.N., Ables, E.V., and Ferrante, A.W. (2010). C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59, 916-925. https://doi.org/10.2337/db09-1403
- Odegaard, J.I., Ricardo-Gonzalez, R.R., Goforth, M.H., Morel, C.R., Subramanian, V., Mukundan, L., Red Eagle, A., Vats, D., Brombacher, F., Ferrante, A.W., et al. (2007). Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447, 1116-1120. https://doi.org/10.1038/nature05894
- Olefsky, J.M., and Glass, C.K. (2010). Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219-246. https://doi.org/10.1146/annurev-physiol-021909-135846
- Otto, M. (2008). Staphylococcal biofilms. Curr. Top. Microbiol. Immunol. 322, 207-228.
- Paciello, I., Silipo, A., Lembo-fazio, L., Curcuru, L., Zumsteg, A., Noel, G., Ciancarella, V., Sturiale, L., Molinaro, A., and Bernardini, M.L. (2013). Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proc. Natl. Acad. Sci. USA 110, E4345-4354. https://doi.org/10.1073/pnas.1303641110
- Page, C., Goicochea, L., Matthews, K., Zhang, Y., Klover, P., Holtzman, M.J., Hennighausen, L., and Frieman, M. (2012). Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. J. Virol. 86, 13334-13349. https://doi.org/10.1128/JVI.01689-12
- Peiris, J.S.M., Chu, C.M., Cheng, V.C.C., Chan, K.S., Hung, I.F.N., Poon, L.L.M., Law, K.I., Tang, B.S., Hon, T.Y., Chan, C.S., et al. (2003). Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361, 1767-1772. https://doi.org/10.1016/S0140-6736(03)13412-5
- Poglitsch, M., Weichhart, T., Hecking, M., Werzowa, J., Katholnig, K., Antlanger, M., Krmpotic, A, Jonjic, S., HOrl, W.H., Zlabinger, G.J., et al. (2012). CMV late phase-induced mTOR activation is essential for efficient virus replication in polarized human macrophages. Am. J. Transplant. 12, 1458-1468. https://doi.org/10.1111/j.1600-6143.2012.04002.x
- Qin, H., Holdbrooks, A.T., Liu, Y., Reynolds, S.L., Yanagisawa, L.L., and Benveniste, E.N. (2012a). SOCS3 deficiency promotes M1 macrophage polarization and inflammation. J. Immunol. 189, 3439-3448. https://doi.org/10.4049/jimmunol.1201168
- Qin, H., Yeh, W.I., De Sarno, P., Holdbrooks, A.T., Liu, Y., Muldowney, M.T., Reynolds, S.L., Yanagisawa, L.L., Fox, T.H., Park, K., et al. (2012b). Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proc. Natl. Acad. Sci. USA 109, 5004-5009. https://doi.org/10.1073/pnas.1117218109
- Racanelli, V., and Rehermann, B. (2006). The liver as an immunological organ. Hepatology 43, S54-S62. https://doi.org/10.1002/hep.21060
- Raes, G., De Baetselier, P., Noel, W., Beschin, A., Brombacher, F., and Hassanzadeh Gh, G. (2002). Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J. Leukoc. Biol. 71, 597-602.
- Raes, G., Van den Bergh, R., De Baetselier, P., Ghassabeh, G.H., Scotton, C., Locati, M., Mantovani, A., and Sozzani, S. (2005). Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J. Immunol. 174, 6561-6562. https://doi.org/10.4049/jimmunol.174.11.6561
- Rauch, I., Muller, M., and Decker, T. (2013). The regulation of inflammation by interferons and their STATs. JAKSTAT 2, e23820.
- Rawlings, J.S., Rosler, K.M., and Harrison, D.A. (2004). The JAK/ STAT signaling pathway. J. Cell Sci. 117, 1281-1283. https://doi.org/10.1242/jcs.00963
- Rius, B., Lopez-Vicario, C., Gonzalez-Periz, A., Moran-Salvador, E., Garcia-Alonso, V., Claria, J., and Titos, E. (2012). Resolution of inflammation in obesity-induced liver disease. Front. Immunol. 3, 257.
- Roh, Y.S., and Seki, E. (2013). Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. J. Gastroenterol. Hepatol. 28, 38-42.
- Rolny, C., Mazzone, M., Tugues, S., Laoui, D., Johansson, I., Coulon, C., Sguadrito, M.L., Segura, I., Li, X., Knevels, E., et al. (2011). HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19, 31-44. https://doi.org/10.1016/j.ccr.2010.11.009
- Rottenberg, M.E., Gigliotti-Rothfuchs, A., and Wigzell, H. (2002). The role of IFN-gamma in the outcome of chlamydial infection. Curr. Opin. Immunol. 14, 444-451. https://doi.org/10.1016/S0952-7915(02)00361-8
- Schaale, K., Brandenburg, J., Kispert, A., Leitges, M., Ehlers, S., and Reiling, N. (2013). Wnt6 is expressed in granulomatous lesions of mycobacterium tuberculosis-infected mice and is involved in macrophage differentiation and proliferation. J. Immunol. 191, 5182-5195. https://doi.org/10.4049/jimmunol.1201819
- Schmieder, A., Michel, J., SchOnhaar, K., Goerdt, S., and Schledzewski, K. (2012). Differentiation and gene expression profile of tumor-associated macrophages. Semin. Cancer. Biol. 22, 289-297. https://doi.org/10.1016/j.semcancer.2012.02.002
- Schulz, C., Gomez Perdiguero, E., Chorro, L., Szabo-Rogers, H., Cagnard, N., Kierdorf, K., Prinz, M., Wu, B., Jacobsen, S.E., Pollard, J.W., et al. (2012). A lineage of myeloid cells independent of Myb and Hematopoietic stem cells. Science 336, 86-90. https://doi.org/10.1126/science.1219179
- Schwabe, R.F., and Brenner, D.A. (2006). Mechanisms of liver injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G583-G589. https://doi.org/10.1152/ajpgi.00422.2005
- Schwabe, R.F., Seki, E., and Brenner, D.A. (2006). Toll-like receptor signaling in the liver. Gastroenterology 130, 1886-900. https://doi.org/10.1053/j.gastro.2006.01.038
- Shanmugam, N., Gaw Gonzalo, I.T., and Natarajan, R. (2004). Molecular mechanisms of high glucose-induced cyclooxygenase-2 expression in monocytes. Diabetes 53, 795-802. https://doi.org/10.2337/diabetes.53.3.795
- Shaughnessy, L.M., and Swanson, J.A. (2007). The role of the activated macrophage in clearing Listeria monocytogenes infection. Front. Biosci. 12, 2683-2692. https://doi.org/10.2741/2364
- Shirakawa, T., Kawazoe, Y., Tsujikawa, T., Jung, D., Sato, S., and Uesugi, M. (2011). Deactivation of STAT6 through serine 707 phosphorylation by JNK. J. Biol. Chem. 286, 4003-4010. https://doi.org/10.1074/jbc.M110.168435
- Sica, A., and Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 22, 787-795.
- Sica, A., Saccani, A., and Mantovani, A. (2002). Tumor-associated macrophages: a molecular perspective. Int. Immunopharmacol. 2, 1045-1054. https://doi.org/10.1016/S1567-5769(02)00064-4
- Sica, A, Invernizzi, P., and Mantovani, A. (2013). Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology [In Press].
- Smith, M., and Bentz, G. (2004a). Human cytomegalovirus induces monocyte differentiation and migration as a strategy for dissemination and persistence. J. Virol. 78, 4444-4453. https://doi.org/10.1128/JVI.78.9.4444-4453.2004
- Smith, M., and Bentz, G. (2004b). HCMV activates PI (3) K in monocytes and promotes monocyte motility and transendothelial migration in a PI (3) K-dependent manner. J. Leukoc. Biol. 76, 65-76. https://doi.org/10.1189/jlb.1203621
- Song, Y., Dou, H., Gong, W., Liu, X., Yu, Z., Li, E., Tan, R., and Hou, Y. (2013). Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis. Eur. J. Pharmacol. 705, 49-60. https://doi.org/10.1016/j.ejphar.2013.02.008
- Stolfi, C., Caruso, R., Franze, E., Sarra, M., De Nitto, D., Rizzo, A., Pallone, F., and Monteleone, G. (2011). Interleukin-25 fails to activate STAT6 and induce alternatively activated macrophages. Immunology 132, 66-77. https://doi.org/10.1111/j.1365-2567.2010.03340.x
- Stout, R.D., Jiang, C., Matta, B., Tietzel, I., Watkins, S.K., and Suttles, J. (2005). Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J. Immunol. 175, 342-349. https://doi.org/10.4049/jimmunol.175.1.342
- Stout, R.D., and Suttles, J. (2004). Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J. Leukoc. Biol. 76, 509-513. https://doi.org/10.1189/jlb.0504272
- Sun, K., Kusminski, C.M., and Scherer, P.E. (2011). Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094-2101. https://doi.org/10.1172/JCI45887
- Sun, H., Sun, Y., Pu, J., Zhang, Y., Zhu, Q., Li, J., Gu, J., Chang, K. C., and Liu, J. (2013). Comparative virus replication and host innate response in human cells infected with 3 prevalent clades (2.3.4, 2.3.2 and 7) of highly pathogenic avian influenza H5N1 viruses. J. Virol. 88, 725-729.
- Takai, H., Ashihara, M., Ishiguro, T., Terashima, H., Watanabe, T., Kato, A., and Suzuki, M. (2009a). Involvement of glypican-3 in the recruitment of M2-polarized tumor-associated macrophages in hepatocellular carcinoma. Cancer Biol. Ther. 8, 2329-2338.
- Takai, H., Kato, A., Kato, C., Watanabe, T., Matsubara, K., Suzuki, M., and Kataoka, H. (2009b). The expression profile of glypican-3 and its relation to macrophage population in human hepatocellular carcinoma. Liver Int. 29, 1056-1064. https://doi.org/10.1111/j.1478-3231.2008.01968.x
- Tateya, S., Kim, F., and Tamori, Y. (2013). Recent advances in obesity-induced inflammation and insulin resistance. Front. Endocrinol. 4, 93.
- Thomson, A.W., and Knolle, P.A. (2010). Antigen-presenting cell function in the tolerogenic liver environment. Nat. Rev. Immunol. 10, 753-766. https://doi.org/10.1038/nri2858
- Thurlow, L.R., Hanke, M.L., Fritz, T., Angle, A., Aldrich, A., Williams, S.H., Engebretsen, I.L., Bayles, K.W., Horswill, A.R., and Kielian, T. (2011). Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol. 186, 6585-6596. https://doi.org/10.4049/jimmunol.1002794
- Tilg, H., and Moschen, A.R. (2010). Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 1836-1846. https://doi.org/10.1002/hep.24001
-
Tosello-Trampont, A.C., Landes, S.G., Nguyen, V., Novobrantseva, T.I., and Hahn, Y.S. (2012). Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-
${\alpha}$ production. J. Biol. Chem. 287, 40161-40172. https://doi.org/10.1074/jbc.M112.417014 - Umemura, N., Saio, M., Suwa, T., Kitoh, Y., Bai, J., Nonaka, K., Ouyang, G.F., Okada, M., Balazs, M., Adany, R., et al. (2008). Tumorinfiltrating myeloid-derived suppressor cells are pleiotropicinflamed monocytes/macrophages that bear M1-and M2-type characteristics. J. Leukoc. Biol. 83, 1136-1144. https://doi.org/10.1189/jlb.0907611
- Verreck, F.A., de Boer, T., Langenberg, D.M., Hoeve, M.A., Kramer, M., Vaisberg, E., Kastelein, R., Kolk, A., de Wall-Malefyt, R., and Ottenhoff, T.H. (2004). Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl. Acad. Sci. USA 101, 4560-4565. https://doi.org/10.1073/pnas.0400983101
- Villares, R., Kakabadse, D., Juarranz, Y., Gomariz, R.P., Martinez-A.C., and Mellado, M. (2013). Growth hormone prevents the development of autoimmune diabetes. Proc. Natl. Acad. Sci. USA 101, 4619-4627.
- Wang, J., Li, F., Sun, R., Gao, X., Wei, H., Li, L.-J., and Tian, Z. (2013). Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat. Commun. 4, 2106.
- Weichhart, T., and Saemann, M.D. (2008). The PI3K/Akt/mTOR pathway in innate immune cells: emerging therapeutic applications. Ann. Rheum. Dis. 67 Suppl 3, iii70-4. https://doi.org/10.1136/ard.2006.068403
- Weisberg, S.P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R.L., and Ferrante, A.W. (2003). Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796-1808. https://doi.org/10.1172/JCI200319246
- Weisberg, S.P., Hunter, D., Huber, R., Lemieux, J., Slaymaker, S., Vaddi, K., Charo, I., Leibel, R.L., and Ferrante, A.W. (2006). CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115-124. https://doi.org/10.1172/JCI24335
- Wynn, T.A., Chawla, A., and Pollard, J.W. (2013). Macrophage biology in development, homeostasis and disease. Nature 496, 445-455. https://doi.org/10.1038/nature12034
- Xu, H., Zhu, J., Smith, S., Foldi, J., Zhao, B., Chung, A.Y., Oultz, H., Kitajewski, J., Shi, C., Weber, S., et al. (2012). Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat. Immunol. 13, 642-650. https://doi.org/10.1038/ni.2304
- Xu, F., Kang, Y., Zhang, H., Piao, Z., Yin, H., Diao, R., Xia, J., and Shi, L. (2013). Akt1-mediated regulation of macrophage polarization in a murine model of Staphylococcus aureus pulmonary infection. J. Infect. Dis. 208, 528-538. https://doi.org/10.1093/infdis/jit177
- Yin, M.J., Yamamoto, Y., and Gaynor, R.B. (1998). The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396, 77-80. https://doi.org/10.1038/23948
- You, Q., Holt, M., Yin, H., Li, G., Hu, C.-J., and Ju, C. (2013). Role of hepatic resident and infiltrating macrophages in liver repair after acute injury. Biochem. Pharmacol. 86, 836-843. https://doi.org/10.1016/j.bcp.2013.07.006
- Yuan, M., Konstantopoulos, N., Lee, J., Hansen, L., Li, Z.W., Karin, M., and Shoelson, S.E. (2001). Reversal of obesity-and dietinduced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293, 1673-1677. https://doi.org/10.1126/science.1061620
- Zhou, Q., Peng, R.-Q., Wu, X.-J., Xia, Q., Hou, J.-H., Ding, Y., Zhou, Q.M., Zhang, X., Pang, Z.Z., Wan, D.S., et al. (2010). The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer. J. Transl. Med. 8, 13. https://doi.org/10.1186/1479-5876-8-13
- Zhou, D., Huang, C., Lin, Z., Zhan, S., Kong, L., Fang, C., and Li, J. (2013). Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell. Signal. 26, 192-197.
- Zhu, L., Baker, S.S., Gill, C., Liu, W., Alkhouri, R., Baker, R.D., and Gill, S.R. (2013). Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57, 601-609. https://doi.org/10.1002/hep.26093
Cited by
- Macrophage polarization in response to oral commensals and pathogens vol.74, pp.3, 2016, https://doi.org/10.1093/femspd/ftw011
- Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis vol.2015, 2015, https://doi.org/10.1155/2015/851252
- Effects of IRF1 and IFN-β interaction on the M1 polarization of macrophages and its antitumor function vol.38, pp.1, 2016, https://doi.org/10.3892/ijmm.2016.2583
- Reduced DNA methylation of sphingosine-1 phosphate receptor 5 in alveolar macrophages in COPD: A potential link to failed efferocytosis vol.22, pp.2, 2017, https://doi.org/10.1111/resp.12949
- Attenuating immune pathology using a microbial-based intervention in a mouse model of cigarette smoke-induced lung inflammation vol.18, pp.1, 2017, https://doi.org/10.1186/s12931-017-0577-y
- M1 and M2 macrophage recruitment during tendon regeneration induced by amniotic epithelial cell allotransplantation in ovine vol.105, 2016, https://doi.org/10.1016/j.rvsc.2016.01.014
- Intracellular Iron Chelation Modulates the Macrophage Iron Phenotype with Consequences on Tumor Progression vol.11, pp.11, 2016, https://doi.org/10.1371/journal.pone.0166164
- Preclinical characterization of DUOC-01, a cell therapy product derived from banked umbilical cord blood for use as an adjuvant to umbilical cord blood transplantation for treatment of inherited metabolic diseases vol.17, pp.6, 2015, https://doi.org/10.1016/j.jcyt.2015.02.006
- Exogenous citrate impairs glucose tolerance and promotes visceral adipose tissue inflammation in mice vol.115, pp.06, 2016, https://doi.org/10.1017/S0007114516000027
- Immunoregulatory Role of NK Cells in Tissue Inflammation and Regeneration vol.8, 2017, https://doi.org/10.3389/fimmu.2017.00301
- Metformin Inhibits Advanced Glycation End Products-Induced Inflammatory Response in Murine Macrophages Partly through AMPK Activation and RAGE/NFκB Pathway Suppression vol.2016, 2016, https://doi.org/10.1155/2016/4847812
- Selective modulation of microglia polarization to M2 phenotype for stroke treatment vol.25, pp.2, 2015, https://doi.org/10.1016/j.intimp.2015.02.019
- Polarization of tumor-associated macrophages and Gas6/Axl signaling in oral squamous cell carcinoma vol.51, pp.7, 2015, https://doi.org/10.1016/j.oraloncology.2015.04.004
- Diverse functional roles of lipocalin-2 in the central nervous system vol.49, 2015, https://doi.org/10.1016/j.neubiorev.2014.12.006
- M2A and M2C Macrophage Subsets Ameliorate Inflammation and Fibroproliferation in Acute Lung Injury Through Interleukin 10 Pathway vol.48, pp.1, 2017, https://doi.org/10.1097/SHK.0000000000000820
- NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization vol.38, pp.10, 2015, https://doi.org/10.14348/molcells.2015.0125
- Double Roles of Macrophages in Human Neuroimmune Diseases and Their Animal Models vol.2016, 2016, https://doi.org/10.1155/2016/8489251
- Gender differences in murine pulmonary responses elicited by cellulose nanocrystals vol.13, pp.1, 2015, https://doi.org/10.1186/s12989-016-0140-x
- Bifidobacterium pseudocatenulatum CECT7765 induces an M2 anti-inflammatory transition in macrophages from patients with cirrhosis vol.64, pp.1, 2016, https://doi.org/10.1016/j.jhep.2015.08.020
- Comparative analysis of signature genes in PRRSV-infected porcine monocyte-derived cells to different stimuli vol.12, pp.7, 2017, https://doi.org/10.1371/journal.pone.0181256
- Recombinant expression of Epinephelus lanceolatus serum amyloid A (ElSAA) and analysis of its macrophage modulatory activities vol.64, 2017, https://doi.org/10.1016/j.fsi.2017.03.032
- Gamma-tocotrienol attenuates high-fat diet-induced obesity and insulin resistance by inhibiting adipose inflammation and M1 macrophage recruitment vol.39, pp.3, 2015, https://doi.org/10.1038/ijo.2014.124
- Nur77 deficiency leads to systemic inflammation in elderly mice vol.12, pp.1, 2015, https://doi.org/10.1186/s12950-015-0085-0
- AMPK-Activated Protein Kinase Suppresses Ccr2 Expression by Inhibiting the NF-κB Pathway in RAW264.7 Macrophages vol.11, pp.1, 2016, https://doi.org/10.1371/journal.pone.0147279
- Targeting androgen receptor with ASC-J9 attenuates cardiac injury and dysfunction in experimental autoimmune myocarditis by reducing M1-like macrophage vol.485, pp.4, 2017, https://doi.org/10.1016/j.bbrc.2017.02.123
- Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues vol.44, pp.7, 2015, https://doi.org/10.3109/08820139.2015.1070269
- MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of Inflammatory Response vol.46, pp.2, 2016, https://doi.org/10.1097/SHK.0000000000000604
- From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation vol.5, 2014, https://doi.org/10.3389/fimmu.2014.00514
- Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas In Vitro vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0129744
- Enhancement of Anti-Hypoxic Activity and Differentiation of Cardiac Stem Cells by Supernatant Fluids from Cultured Macrophages that Phagocytized Dead Mesenchymal Stem Cells vol.17, pp.7, 2016, https://doi.org/10.3390/ijms17071175
- Cholesterol reduction and macrophage function vol.28, pp.5, 2017, https://doi.org/10.1097/MOL.0000000000000444
- Blockade of TGF-β-activated kinase 1 prevents advanced glycation end products-induced inflammatory response in macrophages vol.78, 2016, https://doi.org/10.1016/j.cyto.2015.11.023
- The periodontal war: microbes and immunity vol.75, pp.1, 2017, https://doi.org/10.1111/prd.12222
- Reprint of: Preclinical characterization of DUOC-01, a cell therapy product derived from banked umbilical cord blood for use as an adjuvant to umbilical cord blood transplantation for treatment of inherited metabolic diseases vol.17, pp.9, 2015, https://doi.org/10.1016/j.jcyt.2015.07.014
- Myeloperoxidase-Oxidized LDLs Enhance an Anti-Inflammatory M2 and Antioxidant Phenotype in Murine Macrophages vol.2016, 2016, https://doi.org/10.1155/2016/8249476
- Roles of endoplasmic reticulum stress-mediated apoptosis in M1-polarized macrophages during mycobacterial infections vol.6, pp.1, 2016, https://doi.org/10.1038/srep37211
- Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture vol.358, pp.2, 2017, https://doi.org/10.1016/j.yexcr.2017.07.014
- Advanced Glycation End Products Enhance Macrophages Polarization into M1 Phenotype through Activating RAGE/NF-κB Pathway vol.2015, 2015, https://doi.org/10.1155/2015/732450
- Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0144954
- Effect of iRoot SP and mineral trioxide aggregate (MTA) on the viability and polarization of macrophages vol.80, 2017, https://doi.org/10.1016/j.archoralbio.2017.03.010
- The M2 macrophages induce autophagic vascular disorder and promote mouse sensitivity to urethane-related lung carcinogenesis vol.59, 2016, https://doi.org/10.1016/j.dci.2016.01.010
- Loss of Ifnar1 in Pancreatic Acinar Cells Ameliorates the Disease Course of Acute Pancreatitis vol.10, pp.11, 2015, https://doi.org/10.1371/journal.pone.0143735
- Expression of scavenger receptor-AI promotes alternative activation of murine macrophages to limit hepatic inflammation and fibrosis vol.65, pp.1, 2017, https://doi.org/10.1002/hep.28873
- Identification of Differentially Expressed Long Non-coding RNAs in Polarized Macrophages vol.6, pp.1, 2016, https://doi.org/10.1038/srep19705
- Intestinal hypoxia and hypoxia-induced signalling as therapeutic targets for IBD 2017, https://doi.org/10.1038/nrgastro.2017.101
- Human newborn bacille Calmette–Guérin vaccination and risk of tuberculosis disease: a case-control study vol.14, pp.1, 2016, https://doi.org/10.1186/s12916-016-0617-3
- Spatiotemporal Cadence of Macrophage Polarisation in a Model of Light-Induced Retinal Degeneration vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0143952
- High glucose induced-macrophage activation through TGF-β-activated kinase 1 signaling pathway vol.65, pp.8, 2016, https://doi.org/10.1007/s00011-016-0948-8
- Molecular Mechanisms That Influence the Macrophage M1–M2 Polarization Balance vol.5, 2014, https://doi.org/10.3389/fimmu.2014.00614
- Characterization of the anti-inflammatory properties of NCX 429, a dual-acting compound releasing nitric oxide and naproxen vol.126, 2015, https://doi.org/10.1016/j.lfs.2015.01.025
- The immunomodulatory role of BMP-2 on macrophages to accelerate osteogenesis 2017, https://doi.org/10.1089/ten.TEA.2017.0232
- Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-00103-0
- Plasmin and plasminogen induce macrophage reprogramming and regulate key steps of inflammation resolution via annexin A1 vol.129, pp.21, 2017, https://doi.org/10.1182/blood-2016-09-742825
- NKp46+natural killer cells attenuate metabolism-induced hepatic fibrosis by regulating macrophage activation in mice vol.63, pp.3, 2016, https://doi.org/10.1002/hep.28389
- Pivotal regulators of tissue homeostasis and cancer: macrophages vol.6, pp.1, 2017, https://doi.org/10.1186/s40164-017-0083-4
- HDAC6 Deacetylase Activity Is Critical for Lipopolysaccharide-Induced Activation of Macrophages vol.9, pp.10, 2014, https://doi.org/10.1371/journal.pone.0110718
- Pyropia yezoensis glycoprotein promotes the M1 to M2 macrophage phenotypic switch via the STAT3 and STAT6 transcription factors vol.38, pp.2, 2016, https://doi.org/10.3892/ijmm.2016.2656
- Fraxinus xanthoxyloides leaves reduced the level of inflammatory mediators during in vitro and in vivo studies vol.16, pp.1, 2016, https://doi.org/10.1186/s12906-016-1189-7
- Evaluation of a nanotechnology-based approach to induce gene-expression in human THP-1 macrophages under inflammatory conditions vol.222, pp.2, 2017, https://doi.org/10.1016/j.imbio.2016.08.010
- Pioglitazone alleviates inflammation in diabetic mice fed a high-fat diet via inhibiting advanced glycation end-product-induced classical macrophage activation vol.283, pp.12, 2016, https://doi.org/10.1111/febs.13735
- NLRP3 Inflammasome Expression and Signaling in Human Diabetic Wounds and in High Glucose Induced Macrophages vol.2017, 2017, https://doi.org/10.1155/2017/5281358
- The Early Induction of Suppressor of Cytokine Signaling 1 and the Downregulation of Toll-like Receptors 7 and 9 Induce Tolerance in Costimulated Macrophages vol.38, pp.1, 2015, https://doi.org/10.14348/molcells.2015.2136
- Role of apoptosis and autophagy in tuberculosis vol.313, pp.2, 2017, https://doi.org/10.1152/ajplung.00162.2017
- Microbial Interactions with the Intestinal Epithelium and Beyond: Focusing on Immune Cell Maturation and Homeostasis vol.6, pp.1, 2018, https://doi.org/10.1007/s40139-018-0165-y
- Surface functionalization of electrospun scaffolds using recombinant human decorin attracts circulating endothelial progenitor cells vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-017-18382-y
- IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis vol.9, pp.12, 2018, https://doi.org/10.1007/s13238-018-0505-z
- Injury, repair, inflammation and metaplasia in the stomach vol.596, pp.17, 2018, https://doi.org/10.1113/JP275512
- leaves in macrophage functions vol.29, pp.1, 2018, https://doi.org/10.1080/09540105.2017.1386163
- The role of mononuclear phagocytes in Ebola virus infection vol.104, pp.4, 2018, https://doi.org/10.1002/JLB.4RI0518-183R
- Chemopreventive Effects of Phytochemicals and Medicines on M1/M2 Polarized Macrophage Role in Inflammation-Related Diseases vol.19, pp.8, 2018, https://doi.org/10.3390/ijms19082208
- Beneficial or Harmful Role of Macrophages in Guillain-Barré Syndrome and Experimental Autoimmune Neuritis vol.2018, pp.1466-1861, 2018, https://doi.org/10.1155/2018/4286364
- Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2 vol.18, pp.1, 2018, https://doi.org/10.1186/s12885-018-4299-4
- Sulforaphane Inhibits Lipopolysaccharide-Induced Inflammation, Cytotoxicity, Oxidative Stress, and miR-155 Expression and Switches to Mox Phenotype through Activating Extracellular Signal-Regulated Kinase 1/2–Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway in Murine Microglial Cells vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00036
- Control of Intestinal Inflammation, Colitis-Associated Tumorigenesis, and Macrophage Polarization by Fibrinogen-Like Protein 2 vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00087
- Withaferin A Associated Differential Regulation of Inflammatory Cytokines vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00195
- Ginsenoside Rg3 Mitigates Atherosclerosis Progression in Diabetic apoE–/– Mice by Skewing Macrophages to the M2 Phenotype vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00464
- Hypoxia, Metabolism and Immune Cell Function vol.6, pp.2, 2018, https://doi.org/10.3390/biomedicines6020056
- Influence of iRoot SP and mineral trioxide aggregate on the activation and polarization of macrophages induced by lipopolysaccharide vol.18, pp.1, 2018, https://doi.org/10.1186/s12903-018-0511-9
- M(IL-4) Tissue Macrophages Support Efficient Interferon-Gamma Production in Antigen-Specific CD8 + T Cells with Reduced Proliferative Capacity vol.8, pp.None, 2017, https://doi.org/10.3389/fimmu.2017.01629
- Erythropoietin Attenuates Postoperative Cognitive Dysfunction by Shifting Macrophage Activation toward the M2 Phenotype vol.8, pp.None, 2017, https://doi.org/10.3389/fphar.2017.00839
- Human Immunology of Tuberculosis vol.5, pp.1, 2014, https://doi.org/10.1128/microbiolspec.tbtb2-0016-2016
- Identification of compounds that decrease numbers of Mycobacteria in human macrophages in the presence of serum amyloid P vol.102, pp.3, 2017, https://doi.org/10.1189/jlb.1a0317-118rr
- Advanced glycation end products impair NLRP3 inflammasome–mediated innate immune responses in macrophages vol.292, pp.50, 2017, https://doi.org/10.1074/jbc.m117.806307
- Tumour-associated macrophages and oncolytic virotherapies: a mathematical investigation into a complex dynamics vol.5, pp.2, 2018, https://doi.org/10.1080/23737867.2018.1430518
- GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization vol.19, pp.None, 2014, https://doi.org/10.1186/s12931-017-0708-5
- Modular bioinformatics analysis demonstrates that a Toll-like receptor signaling pathway is involved in the regulation of macrophage polarization vol.18, pp.5, 2014, https://doi.org/10.3892/mmr.2018.9486
- Ebola virus secreted glycoprotein decreases the anti-viral immunity of macrophages in early inflammatory responses vol.324, pp.None, 2014, https://doi.org/10.1016/j.cellimm.2017.11.009
- Methylglyoxal-bis-guanylhydrazone inhibits osteopontin expression and differentiation in cultured human monocytes vol.13, pp.3, 2014, https://doi.org/10.1371/journal.pone.0192680
- Tobacco and Antiretrovirals Modulate Transporter, Metabolic Enzyme, and Antioxidant Enzyme Expression and Function in Polarized Macrophages vol.16, pp.5, 2014, https://doi.org/10.2174/1570162x17666190130114531
- M1 Macrophage Polarization Is Dependent on TRPC1-Mediated Calcium Entry vol.8, pp.None, 2014, https://doi.org/10.1016/j.isci.2018.09.014
- Bone marrow-derived mesenchymal stem cells transplantation alters the course of experimental paracoccidioidomycosis by exacerbating the chronic pulmonary inflammatory response vol.56, pp.7, 2018, https://doi.org/10.1093/mmy/myx128
- Microfluidics‐Assisted Fabrication of Microtissues with Tunable Physical Properties for Developing an In Vitro Multiplex Tissue Model vol.2, pp.12, 2014, https://doi.org/10.1002/adbi.201800236
- Identification of alterations in macrophage activation associated with disease activity in systemic lupus erythematosus vol.13, pp.12, 2014, https://doi.org/10.1371/journal.pone.0208132
- Abdominal paracentesis drainage ameliorates severe acute pancreatitis in rats by regulating the polarization of peritoneal macrophages vol.24, pp.45, 2014, https://doi.org/10.3748/wjg.v24.i45.5131
- Blockade Effects of Anti-Interferon- (IFN-) γ Autoantibodies on IFN-γ-Regulated Antimicrobial Immunity vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/1629258
- Chronic Implant-Related Bone Infections-Can Immune Modulation be a Therapeutic Strategy? vol.10, pp.None, 2014, https://doi.org/10.3389/fimmu.2019.01724
- Polarization of Human Monocyte-Derived Cells With Vitamin D Promotes Control of Mycobacterium tuberculosis Infection vol.10, pp.None, 2014, https://doi.org/10.3389/fimmu.2019.03157
- Macrophage Polarization in the Development and Progression of Ovarian Cancers: An Overview vol.9, pp.None, 2019, https://doi.org/10.3389/fonc.2019.00421
- Roles of Neuropeptide Y in Neurodegenerative and Neuroimmune Diseases vol.13, pp.None, 2014, https://doi.org/10.3389/fnins.2019.00869
- Mannose-decorated hybrid nanoparticles for enhanced macrophage targeting vol.17, pp.None, 2019, https://doi.org/10.1016/j.bbrep.2019.01.007
- In Vivo Choroidal Neovascularization and Macrophage Studies Provide Further Evidence for a Broad Role of Prostacyclin in Angiogenesis vol.35, pp.2, 2014, https://doi.org/10.1089/jop.2018.0077
- Chronic Hepatitis C Virus Infection Impairs M1 Macrophage Differentiation and Contributes to CD8+ T-Cell Dysfunction vol.8, pp.4, 2014, https://doi.org/10.3390/cells8040374
- Lactobacillus fermentum and its potential immunomodulatory properties vol.56, pp.None, 2014, https://doi.org/10.1016/j.jff.2019.02.044
- Green propolis extract promotes in vitro proliferation, differentiation, and migration of bone marrow stromal cells vol.115, pp.None, 2014, https://doi.org/10.1016/j.biopha.2019.108861
- Microbes, metabolites, and the gut-lung axis vol.12, pp.4, 2019, https://doi.org/10.1038/s41385-019-0160-6
- Macrophage heterogeneity and plasticity in tuberculosis vol.106, pp.2, 2019, https://doi.org/10.1002/jlb.mr0318-095rr
- Decorin Secreted by Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Induces Macrophage Polarization via CD44 to Repair Hyperoxic Lung Injury vol.20, pp.19, 2014, https://doi.org/10.3390/ijms20194815
- PE_PGRS62 promotes the survival of Mycobacterium smegmatis within macrophages via disrupting ER stress‐mediated apoptosis vol.234, pp.11, 2014, https://doi.org/10.1002/jcp.28577
- Impact of infection on transplantation tolerance vol.292, pp.1, 2014, https://doi.org/10.1111/imr.12803
- Silencing of lncRNA SNHG20 delays the progression of nonalcoholic fatty liver disease to hepatocellular carcinoma via regulating liver Kupffer cells polarization vol.71, pp.12, 2014, https://doi.org/10.1002/iub.2137
- Toxoplasma ROP16I/III ameliorated inflammatory bowel diseases via inducing M2 phenotype of macrophages vol.25, pp.45, 2014, https://doi.org/10.3748/wjg.v25.i45.6634
- MiR-495 regulates macrophage M1/M2 polarization and insulin resistance in high-fat diet-fed mice via targeting FTO vol.471, pp.11, 2019, https://doi.org/10.1007/s00424-019-02316-w
- IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection vol.13, pp.12, 2014, https://doi.org/10.1371/journal.pntd.0007819
- CEACAM1 Inhibited IκB-α/NF-κB Signal Pathway Via Targeting MMP-9/TIMP-1 Axis in Diabetic Atherosclerosis vol.76, pp.3, 2014, https://doi.org/10.1097/fjc.0000000000000868
- Cyclic AMP Regulates Key Features of Macrophages via PKA: Recruitment, Reprogramming and Efferocytosis vol.9, pp.1, 2014, https://doi.org/10.3390/cells9010128
- Soluble PTX3 of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Attenuates Hyperoxic Lung Injury by Activating Macrophage Polarization in Neonatal Rat Model vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/1802976
- Role of Ginkgolides in the Inflammatory Immune Response of Neurological Diseases: A Review of Current Literatures vol.14, pp.None, 2014, https://doi.org/10.3389/fnsys.2020.00045
- Mechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosis vol.28, pp.1, 2014, https://doi.org/10.1080/1061186x.2019.1613409
- Suppressors of Cytokine Signaling (SOCS)1 and SOCS3 Proteins Are Mediators of Interleukin-10 Modulation of Inflammatory Responses Induced by Chlamydia muridarum and Its Major Outer Membrane Protein vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/7461742
- Metabolic Reprogramming of Mouse Bone Marrow Derived Macrophages Following Erythrophagocytosis vol.11, pp.None, 2014, https://doi.org/10.3389/fphys.2020.00396
- Combination Immunotherapy with Passive Antibody and Sulfasalazine Accelerates Fungal Clearance and Promotes the Resolution of Pneumocystis-Associated Immunopathogenesis vol.88, pp.2, 2020, https://doi.org/10.1128/iai.00640-19
- Highly Water-Preserving Zwitterionic Betaine-Incorporated Collagen Sponges With Anti-oxidation and Anti-inflammation for Wound Regeneration vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.00491
- Sea Hare Hydrolysate-Induced Reduction of Human Non-Small Cell Lung Cancer Cell Growth through Regulation of Macrophage Polarization and Non-Apoptotic Regulated Cell Death Pathways vol.12, pp.3, 2014, https://doi.org/10.3390/cancers12030726
- LncRNA Dnmt3aos regulates Dnmt3a expression leading to aberrant DNA methylation in macrophage polarization vol.34, pp.4, 2014, https://doi.org/10.1096/fj.201902379r
- Paradoxical Pro-inflammatory Responses by Human Macrophages to an Amoebae Host-Adapted Legionella Effector vol.27, pp.4, 2014, https://doi.org/10.1016/j.chom.2020.03.003
- Immunophenotypic quantification of M1 and M2 macrophage polarization in radicular cysts of primary and permanent teeth vol.53, pp.5, 2014, https://doi.org/10.1111/iej.13257
- Immune-Enhancing Effects of Green Lettuce (Lactuca sativa L.) Extracts through the TLR4-MAPK/NF-κB Signaling Pathways in RAW264.7 Macrophage Cells vol.33, pp.3, 2014, https://doi.org/10.7732/kjpr.2020.33.3.183
- Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumor immunity vol.55, pp.4, 2020, https://doi.org/10.1080/10409238.2020.1784085
- Macrophage Polarization Induced by Probiotic Bacteria: a Concise Review vol.12, pp.3, 2014, https://doi.org/10.1007/s12602-019-09612-y
- Vitamin D3 as Potential Treatment Adjuncts for COVID-19 vol.12, pp.11, 2020, https://doi.org/10.3390/nu12113512
- Long non-coding RNA FENDRR regulates IFNγ-induced M1 phenotype in macrophages vol.10, pp.1, 2014, https://doi.org/10.1038/s41598-020-70633-7
- M2 Monocyte Polarization in Dialyzed Patients Is Associated with Increased Levels of M-CSF and Myeloperoxidase-Associated Oxidative Stress: Preliminary Results vol.9, pp.1, 2014, https://doi.org/10.3390/biomedicines9010084
- MAPKAP Kinase-2 Drives Expression of Angiogenic Factors by Tumor-Associated Macrophages in a Model of Inflammation-Induced Colon Cancer vol.11, pp.None, 2014, https://doi.org/10.3389/fimmu.2020.607891
- Fusobacterium nucleatum Facilitates M2 Macrophage Polarization and Colorectal Carcinoma Progression by Activating TLR4/NF-κB/S100A9 Cascade vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.658681
- Macrophage Polarization and Plasticity in Systemic Lupus Erythematosus vol.12, pp.None, 2014, https://doi.org/10.3389/fimmu.2021.734008
- Tumor-Derived Extracellular Vesicles: A Means of Co-opting Macrophage Polarization in the Tumor Microenvironment vol.9, pp.None, 2014, https://doi.org/10.3389/fcell.2021.746432
- Hydrogen Promotes the M1 Macrophage Conversion During the Polarization of Macrophages in Necrotizing Enterocolitis vol.9, pp.None, 2014, https://doi.org/10.3389/fped.2021.710382
- 3D microscopy and deep learning reveal the heterogeneity of crown-like structure microenvironments in intact adipose tissue vol.7, pp.8, 2014, https://doi.org/10.1126/sciadv.abe2480
- Long Non-Coding RNA FENDRR: Gene Structure, Expression, and Biological Relevance vol.12, pp.2, 2014, https://doi.org/10.3390/genes12020177
- Docosahexaenoic acid impacts macrophage phenotype subsets and phagolysosomal membrane permeability with particle exposure vol.84, pp.4, 2014, https://doi.org/10.1080/15287394.2020.1842826
- Programmable multilayer printing of a mechanically-tunable 3D hydrogel co-culture system for high-throughput investigation of complex cellular behavior vol.21, pp.4, 2021, https://doi.org/10.1039/d0lc01230k
- Therapeutic treatment of dietary docosahexaenoic acid for particle-induced pulmonary inflammation in Balb/c mice vol.70, pp.3, 2014, https://doi.org/10.1007/s00011-021-01443-4
- Recombinant Toxoplasma gondii Ribosomal Protein P2 Modulates the Functions of Murine Macrophages In Vitro and Provides Immunity against Acute Toxoplasmosis In Vivo vol.9, pp.4, 2014, https://doi.org/10.3390/vaccines9040357
- Reviewing the Significance of Vitamin D Substitution in Monoclonal Gammopathies vol.22, pp.9, 2014, https://doi.org/10.3390/ijms22094922
- Adversity in early life and pregnancy are immunologically distinct from total life adversity: macrophage-associated phenotypes in women exposed to interpersonal violence vol.11, pp.1, 2014, https://doi.org/10.1038/s41398-021-01498-1
- In vitro Immunostimulatory Activity of Bok Choy (Brassica campestris var. chinensis) Sprouts in RAW264.7 Macrophage Cells vol.34, pp.3, 2014, https://doi.org/10.7732/kjpr.2021.34.3.203
- Prognostic value of immune-related cells and genes in the tumor microenvironment of ovarian cancer, especially CST4 vol.277, pp.None, 2021, https://doi.org/10.1016/j.lfs.2021.119461
- Elizabethkingia anophelis , an emerging pathogen, inhibits RAW 264.7 macrophage function vol.65, pp.8, 2014, https://doi.org/10.1111/1348-0421.12888
- The Macrophage Iron Signature in Health and Disease vol.22, pp.16, 2014, https://doi.org/10.3390/ijms22168457
- Up-regulation of MiR-145-5p promotes the growth and migration in LPS-treated HUVECs through inducing macrophage polarization to M2 vol.41, pp.5, 2014, https://doi.org/10.1080/10799893.2020.1818095
- An immunogenomic phenotype predicting behavioral treatment response: Toward precision psychiatry for mothers and children with trauma exposure vol.99, pp.None, 2014, https://doi.org/10.1016/j.bbi.2021.07.012