DOI QR코드

DOI QR Code

A study on the Channel Estimation Scheme in IEEE 802.11 Based System

IEEE 802.11 기반 시스템에서 채널추정에 관한 연구

  • Kim, Hanjong (School of Electrical, Electronics and Communication Engineering)
  • 김한종 (한국기술교육대학교 전기전자통신공학부)
  • Received : 2014.02.05
  • Accepted : 2014.03.20
  • Published : 2014.03.28

Abstract

Wireless LAN system is evolving toward high-speed data transmission and more accurate channel estimation is necessarily required to improve communication performance. The PLCP preamble field in IEEE 802.11 based wireless MODEM consists of ten short symbols and two long symbols and is used for synchronization and channel estimation. The existing least square (LS) channel estimation is based on only two long training symbols. After estimating channel response separately by using each long training symbol, the final channel estimation is obtained by the average of each estimation. In this paper, a new channel estimation algorithm is presented to improve the performance of the existing LS channel estimation algorithm. From the fact that the short training symbol consists of 12 non-zero subcarriers, it gives us a clue of being able to additionally estimate at least one fourth of channel coefficients. The new LS algorithm performs channel estimation based on both two long training symbols and a short training symbol. The proposed LS algorithm shows a little bit performance improvement over the existing LS estimation and it will be able to be applied to the IEEE 802.11p WAVE system.

무선 랜 시스템은 고속의 데이터를 전송하기 위하여 끊임없이 진화 중이며 통신성능을 향상시키기 위해서는 더욱 정밀한 채널추정이 필수적으로 요구된다. 본 논문에서는 IEEE 802.11 기반 무선 모뎀의 PLCP 구조에서 기존의 긴 훈련심볼만을 이용하여 채널을 추정하는 LS 알고리즘의 성능을 개선하고자 하였다. 48개의 부반송파 중에서 12개의 위치에 짧은 훈련 심볼을 전송하고 있다는 사실을 이용하여 2개의 긴 훈련심볼 뿐만 아니라 하나의 짧은심볼도 함께 사용하여 채널을 추정하는 새로운 LS 추정 알고리즘을 제안하였다. 두 개의 긴 훈련심볼 뿐만 아니라 짧은 훈련 심볼을 이용함으로써 보다 향상된 채널 추정을 제공할 수 있음을 보였으며 제안된 채널 추정알고리즘은 IEEE 802.11p WAVE 차량통신 시스템에도 적용이 가능하리라 생각된다. 또한 학부 및 대학원의 OFDM 관련 채널 추정 교육 시 본 논문의 내용이 유용하게 사용될 수 있을 것이다.

Keywords

References

  1. Young-Soo Cho, MIMI-OFDM Wireless Communications with MATLAB, Hongreung Science Publishing, 2008.
  2. Jee-Hoon Kim, Heejung Yu, and Sok-Kyu Lee," Channel Estimation Scheme for WLAN Systems with Backward Compatibility" ETRI Journal, Volume 34, Number 3, pp 450-453, June 2012 https://doi.org/10.4218/etrij.12.0211.0353
  3. Bixing Ye, "Improved pilot design and channel estimation for 60GHz OFDM based on IEEE 802.11.ad", Wireless Communication and Networking Conference (WCNC) 2013, pp. 4129-4133. July 2013.
  4. A. Tomasoni, D. Gatti, S. Bellini, M. Ferrari and M. Siti, "Efficient OFDM Channel Estimation via an Information Criterion," IEEE Trans. on Wireless Communication, Vol. 12, No.3, pp. 1352-1362, March 2013. https://doi.org/10.1109/TWC.2013.022713.120961
  5. H. Yuan, Y. Ling and H. sun and W. Chen, "Reaearch on Channel Estimation for OFDM receiver Receiver Based on IEEE 802.11a," IEEE International Conference on Idustrial Informatics (INDIN 2008), pp.13-16, July, 2008.
  6. Juha Heiskala, and John Terry, OFDM Wireless LANs: A Theoretical and practical Guide, 2002, SAMS
  7. IEEE Computer Society, "IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements part 11: Wireless LAN medium access control and physical layer specifications." IEEE Std 802.11, June 2007.
  8. G. Matz, "Wireless OFDM systems." Lecture Notes, 2008.
  9. IEEE P802.11-97/96, "Tentative criteria for comparison of modulation methods," 1996.
  10. IEEE Std. 802.11n, IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)