http://dx.doi.org/10.14400/JDC.2014.12.3.227

Real-Time Scheduling Method to assign Virtual CPU in the
Multocore Mobile Virtualization System

Yongho Kang, Kimoon Keum', Seongjong Kim, Kwangyoun J in", Jooman Kim
Pusan National University., ~R2SOFT LTD, ‘Kwangwon National University.

el zob mrkel Fpgst Azwleld S CPU 2%
AN 2AED Y

= 1) R = o * =
BFES, g7, AAE 2ds, A
AEhal [TS838t, (F)YFELZE” A stn AFE et

Abstract Mobile virtualization is an approach to mobile device management in which two virtual platforms are
installed on a single wireless device. A smartphone, a single wireless device, might have one virtual
environment for business use and one for personal use. Mobile virtualization might also allow one device to
run two different operating systems, allowing the same phone to run both RTOS and Android apps. In this
paper, we propose the techniques to virtualize the cores of a multicore, allowing the reassign any number of
vCPUs that are exposed to a OS to any subset of the pCPUs. And then we also propose the real-time
scheduling method to assigning the vCPUs to the pCPU. Suggested technology in this paper solves problem
that increases time of real-time process when interrupt are handled, and is able more to fast processing than
previous algorithm.

Key Words : Mobile Virtualization, Real-time scheduling, Hypervisor Scheduling Algorithm, Multicore

oF wulel ZPgSlE ¥ A9 Mg BRFS shtel B4 Aol BAlsH: waked 4X welel @ AT Pwol
Agozel by BHoR A8E 5 92 ol mud Y
AAS RTOSS Q= Zol= o] FAlo] FasE 849 & dlrk & =k
el ot A 7 sobg Zpgalsta, Bl CPUECPUS Ml ofe] 714 CPUNCPUE Al ddehs 7de
St} R MY CPUSS B9 CPUST BWab/] 918 AAIRE 2AFY W ATk B =Rl A Ak 7
QEIFE A Ao AAE AL AR ADE ARSI, o1 duelFun e HE sl e,

g O fo
@
e

% o
2,
o
N
0, ©
.
=]

4
(m

o i

o2 rlo Lo
~
>
2 o
o
_E

N

FAe] ¢kl TRl AARE 2A1ER, stolute] A 2AEY el WE o}

1. Introduction during the last years has also led to an increased

number of mobile platforms where different

Recently, the growing number of smart phones manufacturers provides their own platform such as

Received 3 January 2014, Revised 5 February 2014 © The Society of Digital Policy & Management. All rights
Accepted 20 March 2014 reserved. This is an open-access article distributed under the
Corresponding Author: Jooman Kim terms of the Creative Commons Attribution Non-Commercial
(Pusan National University) License (http://creativecommons.otg/licenses/by-nc/3.0), which
Email: joomkim@pusan.ac.kr permits unrestricted non-commercial use, distribution, and

reproduction in any medium, provided the original work is
ISSN: 1738-1916 properly cited.

Journal of Digital Convergence | 227

wE)zoh wujel gt Al2ReN g CPU B AR

-

2AEY WY

Windows Mobile, SymbianOS, Linux and IPhone OS,
Android[2,3]. As performance of smartphone device
has been increased, previous virtualization technology
can be applied to the mobile phone with a hypervisor
called virtual machine monitor(VMM)[1,2,3]. In this
mobile virtualization environment, scheduling
technology is required to perform a virtual CPU.

In Multi—core system equipped with two cores or
more(multiple physical CPU), in order to run multiple
operating systems, it was needed that a technology of
virtualization scheduling which perform tasks which
virtual CPU was assigned. In other words, hypervisor
create multiple virtual CPU by virtualizing a physical
CPU, operating system is performed by using a
virtualized CPU in it. In this process, scheduler in
hypervisor is needed in order to allocate efficiently
virtual CPU to the operating system. Previous studies
about mobile virtual scheduling are most about how to
assign multiple virtualized CPU on a single physical
CPU.[7][8] To these multiple virtual CPU assigned to
one physical CPU require a policy which keep physical
CPU resources equitably and maintain appropriately
load halance. To determine how much allocate virtual
CPU to each domain, it should be set the utilization
ratio of physical CPU to hypervisor, scheduler assigns
virtual CPU to the domain according to the utilization
ratio.

Thus, fast interrupt processing requires the
information about load balance and fairness. According
to these calculations, hypervisor select the virtual CPU
which have the highest weight-value, and assign it to
physical CPU. The selected virtual CPU can be
interrupt or not. In this situation, because delay-time
of weight—value calculation is occurred, it does not
guarantee real-time process. In mobile virtualization
system which uses a separate I/O driver models
generally, interrupts occurred in a guest domain are
performed in the domain 0 which should handle
privileged mode. This brings about a late execution

time, when the interrupt are occurred, because they

should execute relevant interrupt in the domain 0 once
again.

In this way which execute virtual CPU on a single
processor, it need a twice execution time of
context-switching due to pass a virtual CPU running
in domain 0 to a ready queue and schedule virtual
CPU for handling the interrupt. So real-time
processing 1s difficult. However, as performance of
mobile devices is developing, research by using the
multi-core processors scheduling is needed for
minimizing the context switching and handling
interrupt fast.

Therefore, in order to ensure real-time processing,
we suggest technology that virtual CPU is scheduled
immediately without delay time for calculating fairness
and load balance by granting highest priority on it
when interrupt handles, and method for selecting and
assigning the best physical CPU among multiple
physical CPUs which can be assigned. Suggested
technology solves the problem that the real-time
processing is increased during the interrupt
processing, and is able more to fast execute

processing than previous algorithm.

2. Related Works

The Xen's credit-based CPU scheduler is a
proportional fair share CPU scheduler built from the
ground up to be work conserving on SMP hosts. It is
now the default scheduler in the xen—unstable trunk.
The SEDF and BVT schedulers are still optionally
available but the plan of record is for them to be
phased out and eventually removed. Each domain
(including Host OS) is assigned a weight and a
capl1,2,34]. A domain with a weight of 512 will get
twice as much CPU as a domain with a weight of 256
on a contended host. Legal weights range from 1 to
60535 and the default is 256. Each CPU manages a
local run queue of runnable VCPUs. This queue is

228 | Journal of Digital Convergence 2014 Mar; 12(3): 227-235

Real—Time Scheduling Method to assign Virtual CPU in the Multocore Mobile Virtualization System

sorted by VCPU priority. A VCPU'’s priority can be
one of two value: over or under representing whether
this VCPU has or hasn’t yet exceeded its fair share of
CPU resource in the ongoing accounting period. When
inserting a VCPU onto a run queue, it is put after all
other VCPUs of equal priority to it. As a VCPU runs,
it consumes credits. Every so often, a system-wide
accounting thread recomputes how many credits each
active VM has earned and bumps the credits. Negative
credits imply a prority of over. Until a VCPU
consumes its alloted credits, it priority is under. On
each CPU, at every scheduling decision (when a
VCPU blocks, yields, completes its time slice, or is
awaken), the next VCPU to run is picked off the head
of the run quete. The scheduling decision is the
common path of the scheduler and is therefore
designed to be light weight and efficient. No
accounting takes place in this code path. When a CPU
doesn’t find a VCPU of priority under on its local run
queue, it will look on other CPUs for one. This load
balancing guarantees each VM receives its fair share
of CPU resources system-wide. Before a CPU goes
idle, it will look on other CPUs to find any runnable

Domain 0 Domain 1

VCPU. This guarantees that no CPU idles when there
is runnable work in the system.

Like Zhou proposed the scheduling problems in
virtualized environment, and find existing CPU
scheduling mechanisms do not fit for PSRT
applications. Aiming at both the soft real-time
constraints and synchronization problems, they present
the parallel soft real-time scheduling algorithm, and
implement a prototype based on Xen, named Poris.
Poris introduces real-time priority, changes the time
slice, and schedules all the VCPUs of a RT-VM at the
same time. If there is no RT-VM in the system, Poris
turns into the Credit scheduler, which can minimize
the impact on nonreal- time VMs[4].

3. System Architecture

Figure 1 shows the physical CPU(PCPUO ~ PCPU3)
is managed in Hypervisor scheduler, cache(L2 Cache
of P_.CPUO and P_CPUI, L2 Cache of P_CPUZ2 and
P_CPU3) is shared by each physical CPU, the
operating system (domain0~domain2) is running by
being virtualized, Virtual CPU(VCPUO ~ VCPUL7?)

Domain 2

hypervisor

VEPULT
VCPULA

Hardware

[Fig. 1] Scheduling of Mobile Multi—Core Virtualization System

Journal of Digital Convergence | 229

|z} walel 7hgal AzslA T CPU B A4

jd
[>
X
N
ol
ol
i

which is virtualized for processing of each domain,
execution queue list. In the execution queue, a virtual
CPU has been ordered according to the highest
priority.

And each virtual CPU has the one priority among
"Interrupt’, "Normal’, 'Idle’. If they have same priority,
each in front of queue has the high priority. If the
status of physical CPU is “Idle”, priority of the virtual
CPU which is assigned to the physical CPU is set to
“Idle”. When virtual CPU wake up from status of IO
operation requests and resource lock, priority of the
virtual CPU is the highest(“Interrupt”). Each physical
CPU is assigned by virtual CPU which is lined in the
execution queue of each scheduling waiting list.
Sometimes, it can be migrated to virtual CPU in the
‘execution queue’ in other physical CPU and allocated
physical CPU. At this time, the policy is needed to
guarantee the Fairness and Load Balance of each
virtual CPU. In this paper, as the policy to guarantee
the fairness and load balance, it is maintained through
the number of implemented virtual CPU in each
execution queue.

In general, when interrupt occurs, the virtualized
system which uses separated I/O driver model
separates into guest domains (domain 1 and domain 2)
on which a front-end driver is located and the domain
0 on which a back-end driver is located. I/O related
interrupts are carried out in the domain 0 because the
interrupts which occur in the guest domains request it
to a back-end driver in the domain 0 through a
front-end driver.

Therefore, if the I/O related interrupts occur in
domain 1, a virtual CPU which runs in the
correspondent physical CPU stops operation and is
included in ‘waiting queue’ until the interrupt is
proceeded. It requests I/O execution in domain 0.

In domain 0, include virtual CPU into the execution
queue of domain 0 to carry out the interrupt which
occurred in domain 1.

In the existing scheduling method, these kinds of

interrupt i1s carried by scheduler which calculates
weighted value and select the highest weighted value
of virtual CPU in each execution queue considering
Fairness and load balance of physical CPU and then
assign physical CPU. It causes time delay of weighted
value calculation. It also cannot guarantee virtual CPU
of interrupt execution is assigned in physical CPU.
This process has a weak it cannot be used in which
real time process is requested such as mobile devices
and embedded devices.

In multi-core processor, one cache(IL2 Cache) is
shared in every two cores, in general. This shared
cache is used to overcome the speed difference with
other devices by previously storing data which CPU
needs while the CPU is processing data. As the two
cores store frequently used data in L2 Cache,
performance can be improved.

Figure 2 shows scheduling block diagram of mobile
multi—core virtual system suggested in this paper. In
this figure, scheduler of mobile multi-core virtual
system includes Interrupt Process Module, Virtual
CPU Process Module, Processor Selection Module, and
Processor Allocation Module.

Interrupt Process Module investigates and detects
interrupts occurred when each virtual CPU is
processed and judge correspondent interrupt type.
Virtual CPU Process Module moves virtual CPU to
waiting queue and execution queue and give priority

[Figure 2] The scheduling block diagram
of mobile virtualization system

230 | Journal of Digital Convergence 2014 Mar; 12(3): 227-235

Real—Time Scheduling Method to assign Virtual CPU in the Multocore Mobile Virtualization System

<Table 1> Information of Physical CPU

Recently used . Shared . Execution
CPU Interrupt Virtual CPU Status Cache Domain Queue
P_CPUO No VCPUO running 0 0 0
P_CPUL Yes VCPUS waiting 0 1 1
P_CPU2 No VCPU10 running 1 2 2
P_CPU3 No - Idle 1 0 3

to process the interrupt. Processor Selection Module
decides which physical CPU should be allocated to
allocate selected virtual CPU in each physical CPU.
For the decision, the Information of Physical CPU can
be used as Table 1.

Table 1 shows physical CPU information to
determine what the physical CPU will choice for
assigning selected virtual CPU to them., CPU field is
the name of the CPU, an interrupt field contains
information about if the interrupt has been bring.
Recently used virtual CPU field contains virtual CPU
information recently performed at each physical CPU.
The Status field has the current status information of
the physical CPU(running, waiting, Idle value). Field
of Shared cache is cache information shared at each
physical CPU, domain field is for information of the
domain which each physical CPU is processing.
Execution queue field means number of queue.

In the Table 1, P_CPUO with value 0 and P_CPU1
share the information inside of cache. domain field is
the information of domain where each physical CPU is
processing. P_CPUO and P_CPU3 execute virtual CPU
about domain 0. Execution queue field indicates the
waiting queue number to execute in each physical
CPU.

In the physical CPU selection, it can happen in
several cases.

In the first case, allocable physical CPU is one. The
physical CPU which was executing virtual CPU stops
execution and moves to waiting queue if interrupt
occurs. To carry out the interrupt, the physical CPU
exists in the state of holding for a moment. Therefore,

the physical CPU is waiting to get allocated a new

virtual CPU. This is the case that interrupt process
virtual CPU is allocated in the physical CPU.

The second case is that the number of allocable
physical CPU is more than two. For example, physical
CPU which was executing virtual CPU with interrupt
and a physical CPU which is in the Idle state can
execute new virtual CPU. Even though a physical
CPU, which is in the Idle state, temporarily stops
execution, it can use the physical CPU through
changing of correspondent domain.

For example in the Table 1, according to the
information of the physical CPU, the physical CPU
with interrupt is P_CPU1 and P_CPU3 is in the Idle
state. Therefore, currently available physical CPU is
P_CPU1 which is in waiting state and P_CPU3 which
is in Idle state. When we consider shared cache and
the information of recently available virtual CPU, it is
the best to allocate in P_CPUI. After that, even though
the state of P_CPUS3 is Idle, the target is about domain
0. Because P_CPU3 can use shared cache such as
P_.CPUO of domain 0O, the process of virtual
CPU(VCPUS6), which is waiting in P_CPU1, changes
into P_CPU3 and the process of virtual CPU, which is
waiting in P_CPU3, changes to be processed in
P_CPUI and the information of physical CPU is also
changed.

The following is the information after the selection
of each physical CPU is performed in the above Table.

For the information of considering processor
selection, physical CPU in the Idle state, physical CPU
with interrupt, physical CPU with the least Time Slice,
and/or physical CPU with the most time slice.

Journal of Digital Convergence | 231

we| o} mujel g AlAEOlA AR CPU S AR 2919 Y

<Table 2> Information of Physical CPU

Recently used Shared . Execution
CPU Interrupt . Status Domain
Virtual CPU Cache Queue
P_CPU0 No VCPU0 running 0 0 0
P_CPU1 No VCPU5 waiting 0 0 3
P_CPU2 No VCPU10 running 1 2 2
P_CPU3 No VCPU6 running 1 1 1

Ready Queue 1

VCPUS

Execution

Execution queue O queue 1

(2)

P_CPUO

Execution queue 2

Execution queue 3

VCPULT
VCPULG

&

[Fig. 3] Result of scheduling according to interrupt occurrence

processor allocation module(140) allocates virtual CPU
which is selected in selected processor. It allocates
virtual CPU which was selected in the Virtual CPU
process module(120) into the physical CPUs which
was selected in the Processor Selection Module(130).

4. Operational Verification

The Figure 3 shows the series of process upon the
interrupt when the virtual CPU(VCPUb) is executed in
the physical CPU(P_CPU1) based on the physical CPU
information of the Table 1. In order to handle the
interrupt, the virtual CPU(VCPUB) is moved to virtual

queve (1) and insert the virtual CPU(VCPU18), which
is related to interrupt handling process, into execution
queue of the physical CPUMP_CPUO), which is
executing domain 0 (2). The scheduler immediately
searches available physical CPU using the information
of the physical CPU in the domain 3 to allocate the
virtual CPU(VCPUILS) into the physical CPU. The
scheduler allocates VCPUIS into P_CPU1 according to
the selection result (3-1).

In addition, even though P_CPU3 is in the Idle state,
it is the CPU allocated by domain 0. In order to
increase its availability, P_CPU3 allocates VCPUSG,
which is not allocated because of interrupt handling of
VCPU5, into P_CPU3 (3-2). At this time, the scheduler

232 [Journal of Digital Convergence 2014 Mar; 12(3): 227-235

Real—Time Scheduling Method to assign Virtual CPU in the Multocore Mobile Virtualization System

changes the information of physical CPU to allocate
the virtual CPU, which exists in the execution queue
of P_CPUI, into P_CPUI, and to allocate the virtual
CPU, which exists in the execution queue of PCPU3,
into P_CPUL.

After handling the interrupt, if response interrupt
about VCPUbS occurs, VCPUbS in the waiting queue is
inserted into execution queue (4). At this time, VCPUS
has the highest priority (Interrupt) and it is instantly
executed by the scheduler. The process is the same as
the process above. Instead, because the available
physical CPU is only the P_CPUI, allocated physical
CPU becomes P_CPUI. Finally, the virtual CPU in the
execution queue 3 is allocated in P_CPUl by the
information of the physical CPU when the Idle state is
withdrawn (6).

5. Conclusion

In this paper, we proposed the real-time scheduling
technique that aim to increase a performance of mobile
virtualization by high-priority interrupt—-driven method
in the mobile environment. immediately without delay
time for calculating fairmess and load balance by
granting highest priority on it when interrupt handles,
and method for selecting and assigning the best
physical CPU among multiple physical CPUs which
can be assigned. Suggested technology in this paper
solves problem that increases time of real-time
process when interrupt are handled, and is able more

to fast execute processing than previous algorithm.

REFERENCES

[1] Paul Barham, Boris Dragovic,etc., “Xen and the
Art of Virtualization”, SOSP03, 2003

[2] Joo-Young Hwang, Sang-Bum Suh, etc., “Xen on
ARM: System Virtualization using Xen Hypervisor

for ARM-based Secure Mobile Phones”, CCNC,
pp257-261, 2008

[3] Henrik Andersson, Joakim Svensson,
“VIRTUALIZATION IN A MOBILE
ENVIRONMENT AN INTRODUCTION TO
PARA-VIRTUALIZATION WITH XEN-ARM,
Department of Electrical and
Technology Lund University

[4] http://wiki.xen.org/wiki/Credit_Scheduler

[6] M. Lee, A. S. Krishnakumar, P. Krishnan, N.
Singh, and S. Yajnik, “Supporting soft real-time

Information

tasks in the xen hypervisor,” in Proc. VEE'10,
2010, pp. 97 - 108.

[6] N. Nishiguchi, “Evaluation and consideration of
the credit scheduler for client virtualization,” Xen
Summit Asia, 2008.

[7] D. Pataik, A. S. Krishnakumar, P. Krishnan, N.
Singh, and S. Yajnik, “Performance implications of
hosting enterprise telephony applications on
virtualized multi—core
IPTComm’09, 2009.

[8] L. Cherkasova, D. Gupta, and A. Vahdat,
“Comparison of the three cpu schedulers in xen,”
SIGMETRICS Perform. Eval. Rev., vol. 35, no. 2,
pp. 42 - 51, 2007.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.
Harris, A. Ho, R. Neugebauer, 1. Pratt, and A.
Warfield, “Xen and the art of virtualization,” in
Proc. SOSP'03, 2003, pp. 164 - 177.

[10] Kernel-based Virtual Machine (KVM) for Linux.
http://www.linux-kvm.org.

[11] V. Uhlig, J. LeVasseur, E. Skoglund, and U.
Dannowski, “Towards scalable multiprocessor
virtual machines,” in Proc. VM'04, 2004, pp.43 - 56.

[12] H. Kim, J. Jeong, J. Hwang, J. Lee, and S. Maeng,
“Scheduler support for video-oriented multimedia
on client-side virtualization,” in Proc. MMSys'12,
2012, pp. 65 -76.

[13] S. Xi, J. Wilson, C. Lu, and C. Gill, “Rt—xen:
Towards real-time hypervisor scheduling in xen,”
in Proc. EMSOFT’11, 2011, pp. 39 - 48.

platforms,” in Proc.

Journal of Digital Convergence | 233

we| o} mujel g AlAEOlA AR CPU S AR 2919 Y

[14] O. Sukwong and H. S. Kim, “Is co—scheduling too
expensive for smp vms?” in Proc. EuroSys'1l,
2011, pp. 257 - 272.

[15] C. Weng, Q. Liu, L. Yu, and M. Li, “Dynamic
adaptive scheduling for virtual machines,” in Proc.
HPDC'11, 2011, pp. 239 - 250.

[16] C. Weng, Z. Wang, M. Li, and X. Ly, “The hybrid
scheduling framework for virtual machine
systems,” in Proc. VEE09, 2009, pp. 111 - 120.

(177 L Molnar, ‘“Linux cfs scheduler,”
http://kerneltrap.org/node/11737.

[18] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R.
Kompella, and D. Xu, “vslicer: latency-aware
virtual machine scheduling via differentiated
frequency cpu slicing,” in Proc. HPDC'12, 2012, pp.
3-14.

[19] H. Chen, H. Jin, K. Huy, and J. Huang, “Dynamic
switching—frequency scaling: scheduling
overcommitted domains in xen vmm,” in Proc.
ICPP'10, 2010, pp. 287 - 296.

[20] J. Hwang and T. Wood, “Adaptive dynamic
priority scheduling for virtual
infrastructures,” in Proc. IWQoS'12, 2012.

[21] D. G. Feitelson and L. Rudolph, “Gang scheduling

fine-grain

desktop

performance benefits for
synchronization,” J. Parallel Distrib. Comput., vol.
16, no. 4, pp. 306 - 318, 1992.

[22] R. McDougall, “Filebench: Application level file
system benchmark,” http://sourceforge.net/apps
/mediawiki/filebench/index.php.

[23] MPlayer. http://www.mplayerhq.hu/.

(241 C. “Benchmarking

multiprocessors,” PhD. dissertation, Princeton

Bienia, modern
University, January 2011.

[25] J. Katcher, “Postmark: A new file system
benchmark,” Technical Report TR3022, Network
Appliance Inc., Tech. Rep., 1997.

[26] Darwin Streaming Server. http://dss.macosforge.
org/.

[27] J. H Anderson and J. M. Calandrino, “Parallel
real-time task scheduling on multicore platforms,”

in Proc. RTSS'06, 2006, pp. &9 - 100.

[28] S. Kato and Y. Ishikawa, “Gang edf scheduling of
parallel task systems,” in Proc. RTSS'09, 2009, pp.
459 - 468

[29] K. Lakshmanan, S. Kato, and R. Rajkumar,
“Scheduling parallel realtime tasks on multi—core
processors,” in Proc. RTSS'10, 2010, pp. 259 - 268.

[30] C. Liu and J. Anderson, “Supporting soft
real-time dag-based systems on multiprocessors
with no utilization loss,” in Proc. RTSS'10, 2010,
pp. 3-13.

[31 A. Saifullah, K. Agrawal, C. Lu, and C. Gill,
“Multi-core real-time scheduling for generalized
parallel task models,” in Proc. RTSS'11, 2011, pp.
217 - 226.

7+ & % (Yongho Kang)

-19049 24 FETiehl S
S
1997 29 ¢ et ASFEE
sHaAIAD
20004 291 : st FehpaL
Eat=
T

- E-Mail : kang@r2soft.cokr

= 7] ¥(Kimun Keum)
<199 24 - e g AFEE
stk Eeh

s AD

Sk

012 11¥€ ~ A4 B $FAE
3 oA}

RN SO ERE ERE
- E-Mail : kmkeum@gmail.com

234 | Journal of Digital Convergence 2014 Mar; 12(3): 227-235

Real—Time Scheduling Method to assign Virtual CPU in the Multocore Mobile Virtualization System

71 A Z#(Seong—Jong Kim)

- 1980 290 : A=t AR
(Z3
-1991d 29 @ ekl Hakest
(&34
-1996\d 24 : A5 digtal HAkest
(F3hb
1997 39 ~ @A) ¢ A
IT8833sky) s
ARk UAE A28 A, ojul] A2, AEeld, 2
vhEgR] &

[e]
- E-Mail : ksj329@pusan.ac.kr

2 % &(Kwangyoun Jin)

<1984 29 - M| HSFE T
shal(h

- 1987 29 - A=kl AFEF
ShalCEsh D

- 20061 7€ AddiEhn HFET

L TR | LSRN
- E-Mail : kyjin@kangwon.ac.kr

7 5 2H(Jooman Kim)

- 1934 29 ATk ARALE
B

- 1998 8¢ : S st HFET
B

- 20034 2 Seoihal HFEY
SH(--shatAl

-19854 1€ ~ 20001 2€ : ETRI
SR T-4)

<1999 7¥ ~ 1964 6€ : vl=r NovellAb LA+

- 20004 3¥€ ~ &A) - Fakstu IT-8-838 s

- Aok QU = Al 8] AATE Al kel S E 75

RLN

5, AR Az

o =21

+E-Mail : joomkim@pusan.ac.kr

Journal of Digital Convergence | 235

