
Journal of Digital Convergence❙ 227

http://dx.doi.org/10.14400/JDC.2014.12.3.227

Real-Time Scheduling Method to assign Vir tual CPU in the

Multocore Mobile Vir tualization System

Yongho Kang, Kimoon Keum**, Seongjong Kim, Kwangyoun J in*, Jooman Kim

Pusan National University., **R2SOFT LTD, *Kwangwon National University.

멀티코아 모바일 가상화 시스템에서 가상 CPU 할당

실시간 스케줄링 방법

강용호, 금기문**, 김선종, 진광윤*, 김주만
부산대학교 IT응용공학과, (주)알투소프트**,강원대학교 컴퓨터과학과*

Abstract Mobile virtualization is an approach to mobile device management in which two virtual platforms are
installed on a single wireless device. A smartphone, a single wireless device, might have one virtual
environment for business use and one for personal use. Mobile virtualization might also allow one device to
run two different operating systems, allowing the same phone to run both RTOS and Android apps. In this
paper, we propose the techniques to virtualize the cores of a multicore, allowing the reassign any number of
vCPUs that are exposed to a OS to any subset of the pCPUs. And then we also propose the real-time
scheduling method to assigning the vCPUs to the pCPU. Suggested technology in this paper solves problem
that increases time of real-time process when interrupt are handled, and is able more to fast processing than
previous algorithm.

Key Words : Mobile Virtualization, Real-time scheduling, Hypervisor Scheduling Algorithm, Multicore

요 약 모바일 가상화는 두 개의 가상 플랫폼을 하나의 무선 장치에 탑재하는 모바일 장치 관리의 한 접근 방법이
다. 단일 무선 장치인 스마트폰은 사업용과 개인용으로의 가상 환경으로 사용될 수 있을 것이다. 모바일 가상화는
또한 동일한 장치에 두 개의 운영체제인 RTOS와 안드로이드 앱이 동시에 수행되는 환경일 수 있다. 본 논문에서는
멀티코아에서 각 코아를 가상화하고, 물리 CPU(pCPUs)에 배당된 여러 가상 CPU(vCPU)를 재 할당하는 기법을 제시
하며 또한 가상 CPU들을 물리 CPU에 할당하기 위한 실시간 스케줄링 방법을 제안한다. 본 논문에서 제안된 기술은
인터럽트 처리시에 실시간 처리의 시간 지연을 해결하였고, 이전의 알고리즘보다 빠른 처리를 가능하게 한다.

주제어 : 모바일 가상화, 실시간 스케줄링, 하이퍼바이저 스케줄링 알고리즘, 멀티코아

Received 3 January 2014, Revised 5 February 2014

Accepted 20 March 2014

Corresponding Author: Jooman Kim

(Pusan National University)

Email: joomkim@pusan.ac.kr

Ⓒ The Society of Digital Policy & Management. All rights

reserved. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial

License (http://creativecommons.otg/licenses/by-nc/3.0), which

permits unrestricted non-commercial use, distribution, and

reproduction in any medium, provided the original work is

properly cited.ISSN: 1738-1916

1. Introduction
Recently, the growing number of smart phones

during the last years has also led to an increased

number of mobile platforms where different

manufacturers provides their own platform such as

멀티코아 모바일 가상화 시스템에서 가상 CPU 할당 실시간 스케줄링 방법

228 ❙Journal of Digital Convergence 2014 Mar; 12(3): 227-235

Windows Mobile, SymbianOS, Linux and IPhone OS,

Android[2,3]. As performance of smartphone device

has been increased, previous virtualization technology

can be applied to the mobile phone with a hypervisor

called virtual machine monitor(VMM)[1,2,3]. In this

mobile virtualization environment, scheduling

technology is required to perform a virtual CPU.

In Multi-core system equipped with two cores or

more(multiple physical CPU), in order to run multiple

operating systems, it was needed that a technology of

virtualization scheduling which perform tasks which

virtual CPU was assigned. In other words, hypervisor

create multiple virtual CPU by virtualizing a physical

CPU, operating system is performed by using a

virtualized CPU in it. In this process, scheduler in

hypervisor is needed in order to allocate efficiently

virtual CPU to the operating system. Previous studies

about mobile virtual scheduling are most about how to

assign multiple virtualized CPU on a single physical

CPU.[7][8] To these multiple virtual CPU assigned to

one physical CPU require a policy which keep physical

CPU resources equitably and maintain appropriately

load balance. To determine how much allocate virtual

CPU to each domain, it should be set the utilization

ratio of physical CPU to hypervisor, scheduler assigns

virtual CPU to the domain according to the utilization

ratio.

Thus, fast interrupt processing requires the

information about load balance and fairness. According

to these calculations, hypervisor select the virtual CPU

which have the highest weight-value, and assign it to

physical CPU. The selected virtual CPU can be

interrupt or not. In this situation, because delay-time

of weight-value calculation is occurred, it does not

guarantee real-time process. In mobile virtualization

system which uses a separate I/O driver models

generally, interrupts occurred in a guest domain are

performed in the domain 0 which should handle

privileged mode. This brings about a late execution

time, when the interrupt are occurred, because they

should execute relevant interrupt in the domain 0 once

again.

In this way which execute virtual CPU on a single

processor, it need a twice execution time of

context-switching due to pass a virtual CPU running

in domain 0 to a ready queue and schedule virtual

CPU for handling the interrupt. So real-time

processing is difficult. However, as performance of

mobile devices is developing, research by using the

multi-core processors scheduling is needed for

minimizing the context switching and handling

interrupt fast.

Therefore, in order to ensure real-time processing,

we suggest technology that virtual CPU is scheduled

immediately without delay time for calculating fairness

and load balance by granting highest priority on it

when interrupt handles, and method for selecting and

assigning the best physical CPU among multiple

physical CPUs which can be assigned. Suggested

technology solves the problem that the real-time

processing is increased during the interrupt

processing, and is able more to fast execute

processing than previous algorithm.

2. Related Works
The Xen’s credit-based CPU scheduler is a

proportional fair share CPU scheduler built from the

ground up to be work conserving on SMP hosts. It is

now the default scheduler in the xen-unstable trunk.

The SEDF and BVT schedulers are still optionally

available but the plan of record is for them to be

phased out and eventually removed. Each domain

(including Host OS) is assigned a weight and a

cap[1,2,3,4]. A domain with a weight of 512 will get

twice as much CPU as a domain with a weight of 256

on a contended host. Legal weights range from 1 to

65535 and the default is 256. Each CPU manages a

local run queue of runnable VCPUs. This queue is

Real-Time Scheduling Method to assign Virtual CPU in the Multocore Mobile Virtualization System

Journal of Digital Convergence❙ 229

[Fig. 1] Scheduling of Mobile Multi-Core Virtualization System

sorted by VCPU priority. A VCPU's priority can be

one of two value: over or under representing whether

this VCPU has or hasn't yet exceeded its fair share of

CPU resource in the ongoing accounting period. When

inserting a VCPU onto a run queue, it is put after all

other VCPUs of equal priority to it. As a VCPU runs,

it consumes credits. Every so often, a system-wide

accounting thread recomputes how many credits each

active VM has earned and bumps the credits. Negative

credits imply a priority of over. Until a VCPU

consumes its alloted credits, it priority is under. On

each CPU, at every scheduling decision (when a

VCPU blocks, yields, completes its time slice, or is

awaken), the next VCPU to run is picked off the head

of the run queue. The scheduling decision is the

common path of the scheduler and is therefore

designed to be light weight and efficient. No

accounting takes place in this code path. When a CPU

doesn't find a VCPU of priority under on its local run

queue, it will look on other CPUs for one. This load

balancing guarantees each VM receives its fair share

of CPU resources system-wide. Before a CPU goes

idle, it will look on other CPUs to find any runnable

VCPU. This guarantees that no CPU idles when there

is runnable work in the system.

Like Zhou proposed the scheduling problems in

virtualized environment, and find existing CPU

scheduling mechanisms do not fit for PSRT

applications. Aiming at both the soft real-time

constraints and synchronization problems, they present

the parallel soft real-time scheduling algorithm, and

implement a prototype based on Xen, named Poris.

Poris introduces real-time priority, changes the time

slice, and schedules all the VCPUs of a RT-VM at the

same time. If there is no RT-VM in the system, Poris

turns into the Credit scheduler, which can minimize

the impact on nonreal- time VMs[4].

3. System Architecture
Figure 1 shows the physical CPU(PCPU0 ~ PCPU3)

is managed in Hypervisor scheduler, cache(L2 Cache

of P_CPU0 and P_CPU1, L2 Cache of P_CPU2 and

P_CPU3) is shared by each physical CPU, the

operating system (domain0~domain2) is running by

being virtualized, Virtual CPU(VCPU0 ~ VCPU17)

멀티코아 모바일 가상화 시스템에서 가상 CPU 할당 실시간 스케줄링 방법

230 ❙Journal of Digital Convergence 2014 Mar; 12(3): 227-235

[Figure 2] The scheduling block diagram
of mobile virtualization system

which is virtualized for processing of each domain,

execution queue list. In the execution queue, a virtual

CPU has been ordered according to the highest

priority.

And each virtual CPU has the one priority among

'Interrupt', 'Normal', 'Idle'. If they have same priority,

each in front of queue has the high priority. If the

status of physical CPU is “Idle”, priority of the virtual

CPU which is assigned to the physical CPU is set to

“Idle”. When virtual CPU wake up from status of I/O

operation requests and resource lock, priority of the

virtual CPU is the highest(“Interrupt”). Each physical

CPU is assigned by virtual CPU which is lined in the

execution queue of each scheduling waiting list.

Sometimes, it can be migrated to virtual CPU in the

‘execution queue’ in other physical CPU and allocated

physical CPU. At this time, the policy is needed to

guarantee the Fairness and Load Balance of each

virtual CPU. In this paper, as the policy to guarantee

the fairness and load balance, it is maintained through

the number of implemented virtual CPU in each

execution queue.

In general, when interrupt occurs, the virtualized

system which uses separated I/O driver model

separates into guest domains (domain 1 and domain 2)

on which a front-end driver is located and the domain

0 on which a back-end driver is located. I/O related

interrupts are carried out in the domain 0 because the

interrupts which occur in the guest domains request it

to a back-end driver in the domain 0 through a

front-end driver.

Therefore, if the I/O related interrupts occur in

domain 1, a virtual CPU which runs in the

correspondent physical CPU stops operation and is

included in ‘waiting queue’ until the interrupt is

proceeded. It requests I/O execution in domain 0.

In domain 0, include virtual CPU into the execution

queue of domain 0 to carry out the interrupt which

occurred in domain 1.

In the existing scheduling method, these kinds of

interrupt is carried by scheduler which calculates

weighted value and select the highest weighted value

of virtual CPU in each execution queue considering

Fairness and load balance of physical CPU and then

assign physical CPU. It causes time delay of weighted

value calculation. It also cannot guarantee virtual CPU

of interrupt execution is assigned in physical CPU.

This process has a weak it cannot be used in which

real time process is requested such as mobile devices

and embedded devices.

In multi-core processor, one cache(L2 Cache) is

shared in every two cores, in general. This shared

cache is used to overcome the speed difference with

other devices by previously storing data which CPU

needs while the CPU is processing data. As the two

cores store frequently used data in L2 Cache,

performance can be improved.

Figure 2 shows scheduling block diagram of mobile

multi-core virtual system suggested in this paper. In

this figure, scheduler of mobile multi-core virtual

system includes Interrupt Process Module, Virtual

CPU Process Module, Processor Selection Module, and

Processor Allocation Module.

Interrupt Process Module investigates and detects

interrupts occurred when each virtual CPU is

processed and judge correspondent interrupt type.

Virtual CPU Process Module moves virtual CPU to

waiting queue and execution queue and give priority

Real-Time Scheduling Method to assign Virtual CPU in the Multocore Mobile Virtualization System

Journal of Digital Convergence❙ 231

CPU Interrupt
Recently used

Virtual CPU
Status

Shared

Cache
Domain

Execution

Queue

P_CPU0 No VCPU0 running 0 0 0

P_CPU1 Yes VCPU5 waiting 0 1 1

P_CPU2 No VCPU10 running 1 2 2

P_CPU3 No - Idle 1 0 3

<Table 1> Information of Physical CPU

to process the interrupt. Processor Selection Module

decides which physical CPU should be allocated to

allocate selected virtual CPU in each physical CPU.

For the decision, the Information of Physical CPU can

be used as Table 1.

Table 1 shows physical CPU information to

determine what the physical CPU will choice for

assigning selected virtual CPU to them., CPU field is

the name of the CPU, an interrupt field contains

information about if the interrupt has been bring.

Recently used virtual CPU field contains virtual CPU

information recently performed at each physical CPU.

The Status field has the current status information of

the physical CPU(running, waiting, Idle value). Field

of Shared cache is cache information shared at each

physical CPU, domain field is for information of the

domain which each physical CPU is processing.

Execution queue field means number of queue.

In the Table 1, P_CPU0 with value 0 and P_CPU1

share the information inside of cache. domain field is

the information of domain where each physical CPU is

processing. P_CPU0 and P_CPU3 execute virtual CPU

about domain 0. Execution queue field indicates the

waiting queue number to execute in each physical

CPU.

In the physical CPU selection, it can happen in

several cases.

In the first case, allocable physical CPU is one. The

physical CPU which was executing virtual CPU stops

execution and moves to waiting queue if interrupt

occurs. To carry out the interrupt, the physical CPU

exists in the state of holding for a moment. Therefore,

the physical CPU is waiting to get allocated a new

virtual CPU. This is the case that interrupt process

virtual CPU is allocated in the physical CPU.

The second case is that the number of allocable

physical CPU is more than two. For example, physical

CPU which was executing virtual CPU with interrupt

and a physical CPU which is in the Idle state can

execute new virtual CPU. Even though a physical

CPU, which is in the Idle state, temporarily stops

execution, it can use the physical CPU through

changing of correspondent domain.

For example in the Table 1, according to the

information of the physical CPU, the physical CPU

with interrupt is P_CPU1 and P_CPU3 is in the Idle

state. Therefore, currently available physical CPU is

P_CPU1 which is in waiting state and P_CPU3 which

is in Idle state. When we consider shared cache and

the information of recently available virtual CPU, it is

the best to allocate in P_CPU1. After that, even though

the state of P_CPU3 is Idle, the target is about domain

0. Because P_CPU3 can use shared cache such as

P_CPU0 of domain 0, the process of virtual

CPU(VCPU6), which is waiting in P_CPU1, changes

into P_CPU3 and the process of virtual CPU, which is

waiting in P_CPU3, changes to be processed in

P_CPU1 and the information of physical CPU is also

changed.

The following is the information after the selection

of each physical CPU is performed in the above Table.

For the information of considering processor

selection, physical CPU in the Idle state, physical CPU

with interrupt, physical CPU with the least Time Slice,

and/or physical CPU with the most time slice.

멀티코아 모바일 가상화 시스템에서 가상 CPU 할당 실시간 스케줄링 방법

232 ❙Journal of Digital Convergence 2014 Mar; 12(3): 227-235

CPU Interrupt
Recently used

Virtual CPU
Status

Shared

Cache
Domain

Execution

Queue

P_CPU0 No VCPU0 running 0 0 0

P_CPU1 No VCPU5 waiting 0 0 3

P_CPU2 No VCPU10 running 1 2 2

P_CPU3 No VCPU6 running 1 1 1

<Table 2> Information of Physical CPU

[Fig. 3] Result of scheduling according to interrupt occurrence

processor allocation module(140) allocates virtual CPU

which is selected in selected processor. It allocates

virtual CPU which was selected in the Virtual CPU

process module(120) into the physical CPUs which

was selected in the Processor Selection Module(130).

4. Operational Verification
The Figure 3 shows the series of process upon the

interrupt when the virtual CPU(VCPU5) is executed in

the physical CPU(P_CPU1) based on the physical CPU

information of the Table 1. In order to handle the

interrupt, the virtual CPU(VCPU5) is moved to virtual

queue (1) and insert the virtual CPU(VCPU18), which

is related to interrupt handling process, into execution

queue of the physical CPU(P_CPU0), which is

executing domain 0 (2). The scheduler immediately

searches available physical CPU using the information

of the physical CPU in the domain 3 to allocate the

virtual CPU(VCPU18) into the physical CPU. The

scheduler allocates VCPU18 into P_CPU1 according to

the selection result (3-1).

In addition, even though P_CPU3 is in the Idle state,

it is the CPU allocated by domain 0. In order to

increase its availability, P_CPU3 allocates VCPU6,

which is not allocated because of interrupt handling of

VCPU5, into P_CPU3 (3-2). At this time, the scheduler

Real-Time Scheduling Method to assign Virtual CPU in the Multocore Mobile Virtualization System

Journal of Digital Convergence❙ 233

changes the information of physical CPU to allocate

the virtual CPU, which exists in the execution queue

of P_CPU1, into P_CPU1, and to allocate the virtual

CPU, which exists in the execution queue of PCPU3,

into P_CPU1.

After handling the interrupt, if response interrupt

about VCPU5 occurs, VCPU5 in the waiting queue is

inserted into execution queue (4). At this time, VCPU5

has the highest priority (Interrupt) and it is instantly

executed by the scheduler. The process is the same as

the process above. Instead, because the available

physical CPU is only the P_CPU1, allocated physical

CPU becomes P_CPU1. Finally, the virtual CPU in the

execution queue 3 is allocated in P_CPU1 by the

information of the physical CPU when the Idle state is

withdrawn (6).

5. Conclusion
In this paper, we proposed the real-time scheduling

technique that aim to increase a performance of mobile

virtualization by high-priority interrupt-driven method

in the mobile environment. immediately without delay

time for calculating fairness and load balance by

granting highest priority on it when interrupt handles,

and method for selecting and assigning the best

physical CPU among multiple physical CPUs which

can be assigned. Suggested technology in this paper

solves problem that increases time of real-time

process when interrupt are handled, and is able more

to fast execute processing than previous algorithm.

REFERENCES
[1] Paul Barham, Boris Dragovic,etc., “Xen and the

Art of Virtualization”, SOSP’03, 2003

[2] Joo-Young Hwang, Sang-Bum Suh, etc., “Xen on

ARM: System Virtualization using Xen Hypervisor

for ARM-based Secure Mobile Phones”, CCNC,

pp257-261, 2008

[3] Henrik Andersson, Joakim Svensson,

“VIRTUALIZATION IN A MOBILE

ENVIRONMENT AN INTRODUCTION TO

PARA-VIRTUALIZATION WITH XEN-ARM”,

Department of Electrical and Information

Technology Lund University

[4] http://wiki.xen.org/wiki/Credit_Scheduler

[5] M. Lee, A. S. Krishnakumar, P. Krishnan, N.

Singh, and S. Yajnik, “Supporting soft real-time

tasks in the xen hypervisor,” in Proc. VEE’10,

2010, pp. 97–108.

[6] N. Nishiguchi, “Evaluation and consideration of

the credit scheduler for client virtualization,” Xen

Summit Asia, 2008.

[7] D. Patnaik, A. S. Krishnakumar, P. Krishnan, N.

Singh, and S. Yajnik, “Performance implications of

hosting enterprise telephony applications on

virtualized multi-core platforms,” in Proc.

IPTComm’09, 2009.

[8] L. Cherkasova, D. Gupta, and A. Vahdat,

“Comparison of the three cpu schedulers in xen,”

SIGMETRICS Perform. Eval. Rev., vol. 35, no. 2,

pp. 42–51, 2007.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.

Harris, A. Ho, R. Neugebauer, I. Pratt, and A.

Warfield, “Xen and the art of virtualization,” in

Proc. SOSP’03, 2003, pp. 164–177.

[10] Kernel-based Virtual Machine (KVM) for Linux.

http://www.linux-kvm.org.

[11] V. Uhlig, J. LeVasseur, E. Skoglund, and U.

Dannowski, “Towards scalable multiprocessor

virtual machines,” in Proc. VM’04, 2004, pp.43–56.

[12] H. Kim, J. Jeong, J. Hwang, J. Lee, and S. Maeng,

“Scheduler support for video-oriented multimedia

on client-side virtualization,” in Proc. MMSys’12,

2012, pp. 65–76.

[13] S. Xi, J. Wilson, C. Lu, and C. Gill, “Rt-xen:

Towards real-time hypervisor scheduling in xen,”

in Proc. EMSOFT’11, 2011, pp. 39–48.

멀티코아 모바일 가상화 시스템에서 가상 CPU 할당 실시간 스케줄링 방법

234 ❙Journal of Digital Convergence 2014 Mar; 12(3): 227-235

[14] O. Sukwong and H. S. Kim, “Is co-scheduling too

expensive for smp vms?” in Proc. EuroSys’11,

2011, pp. 257–272.

[15] C. Weng, Q. Liu, L. Yu, and M. Li, “Dynamic

adaptive scheduling for virtual machines,” in Proc.

HPDC’11, 2011, pp. 239–250.

[16] C. Weng, Z. Wang, M. Li, and X. Lu, “The hybrid

scheduling framework for virtual machine

systems,” in Proc. VEE’09, 2009, pp. 111–120.

[17] I. Molnar, “Linux cfs scheduler,”

http://kerneltrap.org/node/11737.

[18] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R.

Kompella, and D. Xu, “vslicer: latency-aware

virtual machine scheduling via differentiated

frequency cpu slicing,” in Proc. HPDC’12, 2012, pp.

3–14.

[19] H. Chen, H. Jin, K. Hu, and J. Huang, “Dynamic

switching-frequency scaling: scheduling

overcommitted domains in xen vmm,” in Proc.

ICPP’10, 2010, pp. 287–296.

[20] J. Hwang and T. Wood, “Adaptive dynamic

priority scheduling for virtual desktop

infrastructures,” in Proc. IWQoS’12, 2012.

[21] D. G. Feitelson and L. Rudolph, “Gang scheduling

performance benefits for fine-grain

synchronization,” J. Parallel Distrib. Comput., vol.

16, no. 4, pp. 306–318, 1992.

[22] R. McDougall, “Filebench: Application level file

system benchmark,” http://sourceforge.net/apps

/mediawiki/filebench/index.php.

[23] MPlayer. http://www.mplayerhq.hu/.

[24] C. Bienia, “Benchmarking modern

multiprocessors,” Ph.D. dissertation, Princeton

University, January 2011.

[25] J. Katcher, “Postmark: A new file system

benchmark,” Technical Report TR3022, Network

Appliance Inc., Tech. Rep., 1997.

[26] Darwin Streaming Server. http://dss.macosforge.

org/.

[27] J. H. Anderson and J. M. Calandrino, “Parallel

real-time task scheduling on multicore platforms,”

in Proc. RTSS’06, 2006, pp. 89–100.

[28] S. Kato and Y. Ishikawa, “Gang edf scheduling of

parallel task systems,” in Proc. RTSS’09, 2009, pp.

459–468.

[29] K. Lakshmanan, S. Kato, and R. Rajkumar,

“Scheduling parallel realtime tasks on multi-core

processors,” in Proc. RTSS’10, 2010, pp. 259–268.

[30] C. Liu and J. Anderson, “Supporting soft

real-time dag-based systems on multiprocessors

with no utilization loss,” in Proc. RTSS’10, 2010,

pp. 3–13.

[31 A. Saifullah, K. Agrawal, C. Lu, and C. Gill,

“Multi-core real-time scheduling for generalized

parallel task models,” in Proc. RTSS’11, 2011, pp.

217–226.

강 용 호(Yongho Kang)
․1994년 2월 : 충남대학교 컴퓨터공

학(공학사)

․1997년 2월 : 충남대학교 컴퓨터공

학(공학석사)

․2000년 2월 : 충남대학교 공학박사

수료

․2012년 3월 ～ 현재 : 부산대 IT응

용공학과 박사과정

․관심분야 : 클러스터컴퓨팅, 모바일클라우드컴퓨팅, 모바

일 가상화 및 보안

․E-Mail : kang@r2soft.co.kr

금 기 문(Kimun Keum)
․1994년 2월 : 충남대학교컴퓨터공

학과(공학사)

․1996년 2월 : 충남대학교컴퓨터공

학과(공학석사)

․2004년 1월 : 충남대학교 대학원

전문연구요원

․2012년 11월～현재 : ㈜알투소트

프 이사

․관심분야 : 가상화, 네트워크, 패턴인식

․E-Mail : kmkeum@gmail.com

Real-Time Scheduling Method to assign Virtual CPU in the Multocore Mobile Virtualization System

Journal of Digital Convergence❙ 235

김 선 종(Seong-Jong Kim)
․1989년 2월 : 경북대학교전자공학

(공학사)

․1991년 2월 : 경북대학교전자공학

(공학석사)

․1996년 2월 : 경북대학교전자공학

(공학박사)

․1997년 3월 ～ 현재 : 부산대학교

IT응용공학과 교수

․관심분야 : 디지털시스템설계, 이미지처리, 팬턴인식, 스

마트장치 응용

․E-Mail : ksj329@pusan.ac.kr

진 광 윤(Kwangyoun Jin)
․1984년 2월 : 서울과기대컴퓨터공

학과(공학사)

․1987년 2월 : 건국대학교 컴퓨터공

학과(공학석사)

․2005년 7월 : 경남대학교 컴퓨터공

학과(공학박사)

․1990년 3월 ～ 현재 : 강원대학교

컴퓨터공학과 교수

․관심분야 : 정보보안, 임베디드 시스템

․E-Mail : kyjin@kangwon.ac.kr

김 주 만(Jooman Kim)
․1984년 2월 : 숭실대학교전자계산

학(공학사)

․1998년 8월 : 충남대학교컴퓨터공

학(공학사)

․2003년 2월 : 충남대학교컴퓨터공

학(공학박사)

․1985년 1월～ 2000년 2월 : ETRI

OS팀장(책임연구원)

․1995년 7월 ～ 1996년 6월 : 미국 Novell사 객원연구원

․2000년 3월 ～ 현재 : 부산대학교 IT응용공학과 교수

․관심분야 : 임베디드시스템, 실시간시스템, 클러스터컴퓨

팅, 병렬분산 시스템

․E-Mail : joomkim@pusan.ac.kr

