DOI QR코드

DOI QR Code

형상모수를 고려한 소프트웨어 신뢰성 비용 모형에 관한 비교 연구

The Comparative Software Reliability Cost Model of Considering Shape Parameter

  • 김경수 (백석문화대학교 인터넷 정보학부) ;
  • 김희철 (남서울대학교 산업경영공학과)
  • Kim, Kyung-Soo (Dept. of Internet information, BaekSeok Culture University) ;
  • Kim, Hee-Cheul (Dept. of Industrial & Management Engineering, Namseoul University)
  • 투고 : 2013.12.31
  • 심사 : 2014.03.20
  • 발행 : 2014.03.28

초록

본 연구에서는 소프트웨어 제품 테스팅 과정에서 고장 수명분포의 형상모수를 고려한 소프트웨어 신뢰성 비용 모형에 대하여 연구 하였다. 신뢰성 분야에서 많이 사용되는 어랑 분포와 로그-로지스틱 모형을 이용한 형상모수를 반영한 문제를 제시하였다. 소프트웨어 고장모형은 유한고장 비동질적인 포아송과정을 이용하고 모수추정법은 최우추정법을 이용 하였다. 따라서 본 논문에서는 형상모수를 고려한 소프트웨어 비용모형 분석을 위하여 소프트웨어 고장 시간 자료를 적용하여 비교 분석하였다. 본 연구에서 사용된 어랑 분포와 로그-로지스틱분포에 근거한 소프트웨어 비용 모델을 비교한 결과 어랑 모형은 최적의 소프트웨어 방출 시간을 예측 할 수 있지만 로그-로지스틱 모형은 방출시간을 예측 할 수 없기 때문에 로그-로지스틱 보다 어랑 모형이 보다 효율적으로 나타나고 있다. 이 연구를 통하여 소프트웨어 개발자들은 소프트웨어 개발 비용을 파악 하는데 어느 정도 도움을 줄 수 있을 것으로 사료된다.

In this study, reliability software cost model considering shape parameter based on life distribution from the process of software product testing was studied. The shape parameter using the Erlang and Log-logistic model that is widely used in the field of reliability problems presented. The software failure model was used finite failure non-homogeneous Poisson process model, the parameters estimation using maximum likelihood estimation was conducted. In comparison result of software cost model based on the Erlang distribution and the log-logistic distribution software cost model, because Erlang model is to predict the optimal release time can be software, but the log-logistic model to predict to optimal release time can not be, Erlang distribution than the log-logistic distribution appears to be effective. In this research, software developers to identify software development cost some extent be able to help is considered.

키워드

참고문헌

  1. L. Kuo and T. Y. Yang., Bayesian Computation of Software Reliability, Journal of the American Statistical Association, Vol.91, pp. 763-773, 1996. https://doi.org/10.1080/01621459.1996.10476944
  2. Gokhale, S. S. and Trivedi, K. S. A time/structure based software reliability model, Annals of Software Engineering. 8, pp. 85-121. 1999. https://doi.org/10.1023/A:1018923329647
  3. Goel A L, Okumoto K, Time-dependent fault detection rate model for software and other performance measures, IEEE Trans. Reliab. 28, pp.206-11, 1978.
  4. Yamada S, Ohba H., S-shaped software reliability modeling for software error detection", IEEE Trans. Reliab, 32, pp.475-484, 1983.
  5. Zhao M., Change-point problems in software and hardware reliability", Commun. Stat. Theory Methods, 22(3), pp.757-768, 1993. https://doi.org/10.1080/03610929308831053
  6. Shyur H-J., A stochastic software reliability model with imperfect debugging and change-point, J. Syst. Software 66, pp.135-141, 2003. https://doi.org/10.1016/S0164-1212(02)00071-7
  7. Pham H, Zhang X., NHPP software reliability and cost models with testing coverage", Eur. J. Oper. Res, 145, pp.445-454, 2003.
  8. Huang C-Y., Performance analysis of software reliability growth models with testing-effort and change-point, J. Syst. Software 76, pp. 181-194, 2005. https://doi.org/10.1016/j.jss.2004.04.024
  9. Kuei-Chen, C., Yeu-Shiang, H., and Tzai-Zang, L., A study of software reliability growth from the perspective of learning effects, Reliability Engineering and System Safety 93, pp. 1410-.1421, 2008. https://doi.org/10.1016/j.ress.2007.11.004
  10. HeeCheul, Kim. "The Comparative Study of NHPP Delayed S-Shaped and Extreme Value Distribution Software Reliability Model using the Perspective of Learning Effects", International Journal of Advancements in Computing Technology(IJACT) Vol. 5, No. 9, pp.1210-1218, 2013. https://doi.org/10.4156/ijact.vol5.issue9.143
  11. Hee-Cheul Kim, Yue-Soon Choi, Jong-Goo Park, "An Approach for the NHPP Software Reliability Model Using Erlang Distribution", The journal of the Korea Institute of Maritime Information & Communication Sciences v.10 no.1 , pp.7 - 14, 2006.
  12. Kyung-Soo Kim, Hee-Cheul Kim, "The Comparative Study of Software Optimal Release Time of Finite NHPP Model Considering Property of Nonlinear Intensity Function", The Journal of Digital Policy & Management,11(1): 159-166, Sep, 2013.
  13. Kim, Hee Cheul, "The Comparative Study of Software Optimal Release Time of Finite NHPP Model Considering Half-Logistic and Log-logistic Distribution Property", The Journal of Korea Society of Digital Industry and Information, 9(2): 1-10, June, 2013.
  14. L. Kuo and T. Y. Yang., Bayesian Computation of Software Reliability, Journal of the American Statistical Association, Vol.91, pp. 763-773, 1996. https://doi.org/10.1080/01621459.1996.10476944
  15. Ye Zhang and Kaigui Wu, Software Cost Model Considering Reliability and Time of Software in Use, Journal of Convergence Information Technology(JCIT), Volume 7, Number 13, pp. 135-142, 2012.
  16. Kyung-Soo Kim, Hee-Cheul Kim, "The Comparative Software Cost Model of Considering Logarithmic Fault Detection Rate Based on Failure Observation Time", The Journal of Digital Policy & Management, 11(11): 335-342, Nov, 2013. https://doi.org/10.14400/JDPM.2013.11.11.335
  17. R. Satya Prasad, K. R. H. Rao and R.R. L Kantha, Software Reliability Measuring using Modified Maximum Likelihood Estimation and SPC, International Journal of Computer Applications (0975-8887), Volume 21, No.7, pp. 1-5, May, 2011
  18. K. Kanoun and J. C. Laprie, Handbook of Software Reliability Engineering, M.R.Lyu, Editor, chapter Trend Analysis. McGraw-Hill New York, NY, pp. 401-437., 1996.