DOI QR코드

DOI QR Code

Design of short-term forecasting model of distributed generation power for wind power

풍력 발전을 위한 분산형 전원전력의 단기예측 모델 설계

  • Song, Jae-Ju (KEPCO, Software Center SW Engineering) ;
  • Jeong, Yoon-Su (Dept. of Information Communication & Engineering, Mokwon University) ;
  • Lee, Sang-Ho (Dept. of Software, Chungbuk National University)
  • 송재주 (한국전력공사 전력연구원 소프트웨어센터 SW엔지니어링) ;
  • 정윤수 (목원대학교 정보통신공학과) ;
  • 이상호 (충북대학교 소프트웨어학과)
  • Received : 2013.12.11
  • Accepted : 2014.03.20
  • Published : 2014.03.28

Abstract

Recently, wind energy is expanding to combination of computing to forecast of wind power generation as well as intelligent of wind powerturbine. Wind power is rise and fall depending on weather conditions and difficult to predict the output for efficient power production. Wind power is need to reliably linked technology in order to efficient power generation. In this paper, distributed power generation forecasts to enhance the predicted and actual power generation in order to minimize the difference between the power of distributed power short-term prediction model is designed. The proposed model for prediction of short-term combining the physical models and statistical models were produced in a physical model of the predicted value predicted by the lattice points within the branch prediction to extract the value of a physical model by applying the estimated value of a statistical model for estimating power generation final gas phase produces a predicted value. Also, the proposed model in real-time National Weather Service forecast for medium-term and real-time observations used as input data to perform the short-term prediction models.

최근 풍력에너지는 풍력터빈의 지능화뿐만 아니라 풍력 발전량 예측 부분에서 컴퓨팅과의 결합이 확대되고 있다. 풍력 발전은 기상상태에 따라 출력변동이 심하고 출력 예측이 어려워 효율적인 전력 생산을 위해서 신재생에너지를 전력계통에 안정적으로 연계할 수 있는 기술이 필요하다. 본 논문에서는 분산형 전원의 예측정보를 향상시켜 예측한 발전량과 실제 발전량의 차이를 최소화하기 위한 분산형 전원전력의 단기예측 모델을 설계한다. 제안된 모델은 단기 예측을 위해서 물리모델과 통계모델을 결합하였으며, 물리모델에서 생산된 격자별 예측값 중 예측 지점내 예측지점의 값을 추출하고, 물리 모델 예측값에 통계모델을 적용하여 발전량 산정을 위한 최종 기상 예측값을 생성한다. 또한, 제안 모델에서는 실시간 기상청 관측자료와 실시간 중기 예측 자료를 입력 자료로 사용하여 단기 예측모델을 수행한다.

Keywords

References

  1. TrueWind Solutions(2003), "Overview of Wind Energy Generation Forecasting", NewYork State Energy Researchand Development Authority, DraftReport.
  2. V. Francois, L. Jacques, D. Olivier(2009), "Solutions to Reduce the Impact of Wind Prediction Errors on the Classical Electrical System Operation", Recent Patents on Electrical Engineering, Vol. 2, pp. 13-18. https://doi.org/10.2174/1874476110902010013
  3. P. Pinson, G. Kariniotakis(2004), "On-line Assessment of Prediction Risk for Wind Power Production Forecasts", Wind Energy Journal, vol. 7, pp. 119-132. https://doi.org/10.1002/we.114
  4. B. Abraham and J. Ledolter(2005), "Statistical methods for forecasting", Wiley, New York.
  5. G. E. P. Box, G. M. Jenkins and, G. C. Reinsel(1994), "Time series analysis, forecasting and control", 3rd Ed., Prentice Hall, Englewood Cliffs, New Jersey.
  6. Z. Guo, W. Zhao, H. Lu and J. Wang(2012), "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model", Renewable Energy, vol. 37, pp. 241-249. https://doi.org/10.1016/j.renene.2011.06.023
  7. M. Y. Hwang, C. H. Jin, U. Yun, K. D. Kim and K. H. Ryu(2012), "Building of prediction model of wind power generation using power ramp rate", Journal of the Korea Society of Computer and Information, vol. 17, pp. 211-218. https://doi.org/10.9708/jksci.2012.17.1.211
  8. S. Y. Kim and S. H. Kim(2011), "Study on the predication of wind power generation based on artificial neural netowrk", Journal of Institute of Control, Robotics and System, vol. 17, pp. 1173-1178. https://doi.org/10.5302/J.ICROS.2011.17.11.1173
  9. H. Lee(2012), "Analysis of time series models for consumer price index", Journal of the Korean Data & Information Science Society, vol. 23, pp. 535-542. https://doi.org/10.7465/jkdi.2012.23.3.535
  10. A. More and M. C. Deo(2003), "Forecasting wind with neural networks", marine Structure, vol. 16, pp. 35-49. https://doi.org/10.1016/S0951-8339(02)00053-9
  11. K. J. Oh, T. Y. Kim, K. Jung and C. Kim(2011), "Stock market stability index via linear and neural network autoregressive model", Journal of the Korean Data & Information Science Society, vol. 22, pp. 335-351.
  12. W. J. e. Potts(2000), "Neural network modeling course notes", SAS Institute Inc., Cary, NC.
  13. J. powers and M. M. Ali(2000), "Application of neural networks in aluminum corrosion", Journal of the Korean Data & Information Science Society, vol. 1, pp. 157-172.
  14. A. Sfetsos(2002), "A novel approach for the forecasting of mean hourly wind speed time series", Renewable Energy, vol. 27, pp. 163-174. https://doi.org/10.1016/S0960-1481(01)00193-8
  15. Y. S. Lee, J. Kim, M. S. Jang and H. G. Kim(2013), "A study on comparing short-term wind power predication models in Gunsan wind farm", Journal of the Korean Data & Information Science Society, vol. 24, no. 3, pp. 585-592. https://doi.org/10.7465/jkdi.2013.24.3.585

Cited by

  1. A Scheme on Energy Efficiency Through the Convergence of Micro-grid and Small Hydro Energy vol.6, pp.1, 2015, https://doi.org/10.15207/JKCS.2015.6.1.029