DOI QR코드

DOI QR Code

Tumour Suppressor Mechanisms in the Control of Chromosome Stability: Insights from BRCA2

  • Venkitaraman, Ashok R. (University of Cambridge, Medical Research Council Cancer Unit, Hutchison, MRC Research Centre)
  • 투고 : 2013.11.20
  • 심사 : 2013.11.23
  • 발행 : 2014.02.28

초록

Cancer is unique amongst human diseases in that its cellular manifestations arise and evolve through the acquisition of somatic alterations in the genome. In particular, instability in the number and structure of chromosomes is a near-universal feature of the genomic alterations associated with epithelial cancers, and is triggered by the inactivation of tumour suppressor mechanisms that preserve chromosome integrity in normal cells. The nature of these mechanisms, and how their inactivation promotes carcinogenesis, remains enigmatic. I will review recent work from our laboratory on the tumour suppressor BRCA2 that addresses these issues, focusing on new insights into cancer pathogenesis and therapy that are emerging from improved understanding of the molecular basis of chromosomal instability in BRCA2-deficient cancer cells.

키워드

참고문헌

  1. Ayoub, N., Rajendra, E., Su, X., Jeyasekharan, A.D., Mahen, R., and Venkitaraman, A.R. (2009). The carboxyl terminus of Brca2 links the disassembly of Rad51 complexes to mitotic entry. Curr. Biol. 19, 1075-1085. https://doi.org/10.1016/j.cub.2009.05.057
  2. Breast Cancer Linkage Consortium (1999). The breast cancer linkage consortium: cancer risks in BRCA2 mutation carriers. J. Natl. Cancer Inst. 91, 1310-1316. https://doi.org/10.1093/jnci/91.15.1310
  3. Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J., and Helleday, T. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913-917. https://doi.org/10.1038/nature03443
  4. Caldas, C., and Kern, S.E. (1995). K-ras mutation and pancreatic adenocarcinoma. Int. J. Pancreatol. 18, 1-6.
  5. Cancer Genome Atlas Consortium (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615. https://doi.org/10.1038/nature10166
  6. Carreira, A., Hilario, J., Amitani, I., Baskin, R.J., Shivji, M.K., Venkitaraman, A.R., and Kowalczykowski, S.C. (2009). The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51. Cell 136, 1032-1043. https://doi.org/10.1016/j.cell.2009.02.019
  7. Choi, E., Park, P.G., Lee, H.O., Lee, Y.K., Kang, G.H., Lee, J.W., Han, W., Lee, H.C., Noh, D.Y., Lekomtsev, S., et al. (2012). BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation. Dev. Cell 22, 295-308 https://doi.org/10.1016/j.devcel.2012.01.009
  8. Couch, F.J., Johnson, M.R., Rabe, K.G., Brune, K., de Andrade, M., Goggins, M., Rothenmund, H., Gallinger, S., Klein, A., Petersen, G.M., et al. (2007). The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiol. Biomarkers Prev. 16, 342-346. https://doi.org/10.1158/1055-9965.EPI-06-0783
  9. Daniels, M.J., Wang, Y., Lee, M., and Venkitaraman, A.R. (2004). Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science 306, 876-879. https://doi.org/10.1126/science.1102574
  10. Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N., Johnson, D.A., Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights C., et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917-921. https://doi.org/10.1038/nature03445
  11. Friedman, L.S., Thistlethwaite, F.C., Patel, K.J., Yu, V.P., Lee, H., Venkitaraman, A.R., Abel, K.J., Carlton, M.B., Hunter, S.M., Colledge, W.H., et al. (1998). Thymic lymphomas in mice with a truncating mutation in Brca2. Cancer Res. 58, 1338-1343.
  12. Gretarsdottir, S., Thorlacius, S., Valgardsdottir, R., Gudlaugsdottir, S., Sigurdsson, S., Steinarsdottir, M., Jonasson, J.G., Anamthawat- Jonsson, K., and Eyfjord, J.E. (1998). BRCA2 and p53 mutations in primary breast cancer in relation to genetic instability. Cancer Res. 58, 859-862.
  13. Hahn, S.A., Greenhalf, B., Ellis, I., Sina-Frey, M., Rieder, H., Korte, B., Gerdes, B., Kress, R., Ziegler, A., Raeburn, J.A., et al. (2003). BRCA2 germline mutations in familial pancreatic carcinoma. J. Natl. Cancer Inst. 95, 214-221. https://doi.org/10.1093/jnci/95.3.214
  14. Hezel, A.F., Kimmelman, A.C., Stanger, B.Z., Bardeesy, N., and Depinho, R.A. (2006). Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 20, 1218-1249. https://doi.org/10.1101/gad.1415606
  15. Hruban, R., Pitman, M., and Klimstra, D.S. (2007). Tumors of the Pancreas, AFIP ATLAS of Tumour Pathology, Series IV, (American Registry of Pathology).
  16. Jeyasekharan, A.D., Liu, Y., Hattori, H., Pisupati, V., Jonsdottir, A.B., Rajendra, E., Lee, M., Sundaramoorthy, E., Schlachter, S., Kaminski, C.F., et al. (2013). A cancer-associated BRCA2 mutation reveals masked nuclear export signals controlling localization. Nat. Struct. Mol. Biol. 20, 1191-1198. https://doi.org/10.1038/nsmb.2666
  17. Jonkers, J., Meuwissen, R., van der Gulden, H., Peterse, H., van der Valk, M., and Berns, A. (2001). Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418-425. https://doi.org/10.1038/ng747
  18. King, T.A., Li, W., Brogi, E., Yee, C.J., Gemignani, M.L., Olvera, N., Levine, D.A., Norton, L., Robson, M.E., Offit, K., et al. (2007). Heterogenic loss of the wild-type BRCA allele in human breast tumorigenesis. Ann. Surg. Oncol. 14, 2510-2518. https://doi.org/10.1245/s10434-007-9372-1
  19. Lee, M., Daniels, M.J., Garnett, M.J., and Venkitaraman, A.R. (2011). A mitotic function for the high-mobility group protein HMG20b regulated by its interaction with the BRC repeats of the BRCA2 tumor suppressor. Oncogene 30, 3360-3369. https://doi.org/10.1038/onc.2011.55
  20. Lomonosov, M., Anand, S., Sangrithi, M., Davies, R., and Venkitaraman, A.R. (2003). Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev. 17, 3017-3022. https://doi.org/10.1101/gad.279003
  21. Maitra, A., and Hruban, R.H. (2008). Pancreatic cancer. Annu. Rev. Pathol. 3, 157-188. https://doi.org/10.1146/annurev.pathmechdis.3.121806.154305
  22. Menzel, T., Nahse-Kumpf, V., Kousholt, A.N., Klein, D.K., Lund-Andersen, C., Lees, M., Johansen, J.V., Syljuasen, R.G., and Sorensen, C.S. (2011). A genetic screen identifies BRCA2 and PALB2 as key regulators of G2 checkpoint maintenance. EMBO Rep. 12, 705-712. https://doi.org/10.1038/embor.2011.99
  23. Mikaelsdottir, E.K., Valgeirsdottir, S., Eyfjord, J.E., and Rafnar, T. (2004). The Icelandic founder mutation BRCA2 999del5: analysis of expression. Breast Cancer Res. 6, R284-290. https://doi.org/10.1186/bcr785
  24. Mondal, G., Rowley, M., Guidugli, L., Wu, J., Pankratz, V.S., and Couch, F.J. (2012). BRCA2 localization to the midbody by filamin A regulates cep55 signaling and completion of cytokinesis. Dev. Cell 23, 137-152. https://doi.org/10.1016/j.devcel.2012.05.008
  25. Parkin, D.M., Bray, F.I., and Devesa, S.S. (2001). Cancer burden in the year 2000. The global picture. Eur. J. Cancer 37, S4-66.
  26. Patel, K.J., Yu, V.P., Lee, H., Corcoran, A., Thistlethwaite, F.C., Evans, M.J., Colledge, W.H., Friedman, L.S., Ponder, B.A., and Venkitaraman, A.R. (1998). Involvement of Brca2 in DNA repair. Mol. Cell 1, 347-357. https://doi.org/10.1016/S1097-2765(00)80035-0
  27. Redston, M.S., Caldas, C., Seymour, A.B., Hruban, R.H., da Costa, L., Yeo, C.J., and Kern, S.E. (1994). p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res. 54, 3025-3033.
  28. Schlacher, K., Christ, N., Siaud, N., Egashira, A., Wu, H., and Jasin, M. (2011). Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529-542. https://doi.org/10.1016/j.cell.2011.03.041
  29. Shivji, M.K., Mukund, S.R., Rajendra, E., Chen, S., Short, J.M., Savill, J., Klenerman, D., and Venkitaraman, A.R. (2009). The BRC repeats of human BRCA2 differentially regulate RAD51 binding on single- versus double-stranded DNA to stimulate strand exchange. Proc. Natl. Acad. Sci. USA 106, 13254-13259. https://doi.org/10.1073/pnas.0906208106
  30. Skoulidis, F., Cassidy, L.D., Pisupati, V., Jonasson, J.G., Bjarnason, H., Eyfjord, J.E., Karreth, F.A., Lim, M., Barber, L.M., Clatworthy, S.A., et al. (2010). Germline Brca2 heterozygosity promotes Kras(G12D) -driven carcinogenesis in a murine model of familial pancreatic cancer. Cancer Cell 18, 499-509. https://doi.org/10.1016/j.ccr.2010.10.015
  31. Thompson, D., and Easton, D.F. (2002). Cancer incidence in BRCA1 mutation carriers. J. Natl. Cancer Inst. 94, 1358-1365. https://doi.org/10.1093/jnci/94.18.1358
  32. Tirkkonen, M., Johannsson, O., Agnarsson, B.A., Olsson, H., Ingvarsson, S., Karhu, R., Tanner, M., Isola, J., Barkardottir, R.B., Borg, A., et al. (1997). Distinct somatic genetic changes associated with tumor progression in carriers of BRCA1 and BRCA2 germ-line mutations. Cancer Res. 57, 1222-1227.
  33. Tutt, A.N., van Oostrom, C.T., Ross, G.M., van Steeg, H., and Ashworth, A. (2002). Disruption of Brca2 increases the spontaneous mutation rate in vivo: synergism with ionizing radiation. EMBO Rep. 3, 255-260. https://doi.org/10.1093/embo-reports/kvf037
  34. Venkitaraman, A.R. (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171-182. https://doi.org/10.1016/S0092-8674(02)00615-3
  35. Venkitaraman, A.R. (2009). Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Annu. Rev. Pathol. 4, 461-487. https://doi.org/10.1146/annurev.pathol.3.121806.151422
  36. West, S.C. (2003). Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol. 4, 435-445.
  37. Willems-Jones, A., Kavanagh, L., Clouston, D., Bolton, D., kCon-Fab Investigators, Fox, S., and Thorne, H. (2012). High grade prostatic intraepithelial neoplasia does not display loss of heterozygosity at the mutation locus in BRCA2 mutation carriers with aggressive prostate cancer. BJU Int. 110, E1181-E1186. https://doi.org/10.1111/j.1464-410X.2012.11519.x
  38. Wooster, R., Neuhausen, S.L., Mangion, J., Quirk, Y., Ford, D., Collins, N., Nguyen, K., Seal, S., Tran, T., Averill, D., et al. (1994). Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265, 2088-2090. https://doi.org/10.1126/science.8091231
  39. Xu, X., Weaver, Z., Linke, S.P., Li, C., Gotay, J., Wang, X.W., Harris, C.C., Ried, T., and Deng, C.X. (1999). Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389-395. https://doi.org/10.1016/S1097-2765(00)80466-9
  40. Yu, V.P., Koehler, M., Steinlein, C., Schmid, M., Hanakahi, L.A., van Gool, A.J., West, S.C., and Venkitaraman, A.R. (2000). Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev. 14, 1400-1406.

피인용 문헌

  1. Cellular Retinoic Acid-binding Protein 2 Inhibits Tumor Growth by Two Distinct Mechanisms vol.289, pp.49, 2014, https://doi.org/10.1074/jbc.M114.604041
  2. Mutations in BRCA2 and taxane resistance in prostate cancer vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-04897-x
  3. Personalised pathway analysis reveals association between DNA repair pathway dysregulation and chromosomal instability in sporadic breast cancer vol.10, pp.1, 2016, https://doi.org/10.1016/j.molonc.2015.09.007
  4. Design, synthesis, and characterization of BRC4 mutants based on the crystal structure of BRC4-RAD51(191–220) vol.21, pp.11, 2015, https://doi.org/10.1007/s00894-015-2831-x
  5. Hypovitaminosis D exacerbates the DNA damage load in human uterine fibroids, which is ameliorated by vitamin D3 treatment pp.1745-7254, 2018, https://doi.org/10.1038/s41401-018-0184-6
  6. Breast cancer risk associated with genes encoding DNA repair MRN complex: a study from Punjab, Pakistan vol.25, pp.3, 2018, https://doi.org/10.1007/s12282-018-0837-9
  7. -Mutant Zebrafish Model vol.2019, pp.1687-8469, 2019, https://doi.org/10.1155/2019/9218251
  8. The role of BRCA1/2 in hereditary and familial breast and ovarian cancers vol.7, pp.9, 2014, https://doi.org/10.1002/mgg3.879
  9. Synthetic Lethal Activity of Benzophenanthridine Alkaloids From Zanthoxylum coco Against BRCA1-Deficient Cancer Cells vol.11, pp.None, 2014, https://doi.org/10.3389/fphar.2020.593845
  10. A Link between Replicative Stress, Lamin Proteins, and Inflammation vol.12, pp.4, 2014, https://doi.org/10.3390/genes12040552
  11. A small-molecule inhibitor of the BRCA2-RAD51 interaction modulates RAD51 assembly and potentiates DNA damage-induced cell death vol.28, pp.6, 2021, https://doi.org/10.1016/j.chembiol.2021.02.006