논리연구 17-2(2014) pp. 323-348

An Axiomatic Extension of the Uninorm Logic Revisited^{*}

Eunsuk Yang

[Abstract] In this paper, we show that the standard completeness for the extension of UL with compensation-free reinforcement (cfr) (($\phi \& \psi$) \rightarrow ($\phi \land \psi$)) \lor (($\phi \lor \psi$) \rightarrow ($\phi \& \psi$)) can be established. More exactly, first, the compensation-freely reinforced uninorm logic UL_{cfr} (the UL with (cfr)) is introduced. The algebraic structures of UL_{cfr} are then defined, and its algebraic completeness is established. Next, standard completeness (i.e. completeness on [0, 1]) is established for UL_{cfr} by using the method introduced in Yang (2009).

[Key Words] (compensation-freely reinforced) fuzzy logic, uninorm, t-norm, algebraic completeness, standard completeness.

접수일자: 2014.02.24 심사 및 수정완료일: 2014.04.25 게재확정일: 2014.05.29

^{*} This paper was supported by research funds of Chonbuk National University in 2014. I must thank the anonymous referees for their helpful comments.

1. Introduction

This paper is a continuation of the work in Yang (2013). First, note that uninorms satisfying t-weakening are t-norms and so the standard completeness proof for the t-weakening uninorm logic UL_{Wt} , the uninorm logic UL with t-weakening (W_t) $((\Phi \& \Psi) \land$ $t) \rightarrow \Phi$, introduced in Yang (2009) is not interesting in the sense that such proof is not for a weakening-free uninorm logic. In this paper, we show that such standard completeness can be established for the extension of UL with compensation-free reinforcement (cfr) $((\Phi \& \Psi) \rightarrow (\Phi \land \Psi)) \lor ((\Phi \lor \Psi) \rightarrow (\Phi \& \Psi))$ as a weakening-free uninorm logic.

We first reconsider the following statements in Yang (2009).

The starting point for the current work is the observation that t-norms are uninorms. As we mentioned above, while t-norms have unit at 1, uninorms does instead unit lying anywhere in [0, 1]. Then a natural concern arises about for which uninorm logics Metcalfe and Montagna's strategy being able to work. Since **MTL** is the logic of left-continuous t-norms, this strategy of course works for t-norms, i.e., uninorms having identity 1. We here show that it works for other uninorms, i.e., uninorms not being t-norms. More exactly, we show that Jenei and Montagna-style approach may work for logics based on uninorms with a weak form of weakening (called the *t-weakening*), i.e., for *t-weakening uninorm (based) logics*.(Yang (2009), p. 118.)

As the statements show, Yang considered t-weakening uninorm logics as logics not based on t-norms. As one example of such uninorm logics, he introduced the t-weakening uninorm logic UL_{Wt} and gave standard completeness proof for it in Yang (2009).

An Axiomatic Extension of the Uninorm Logic Revisited 325

However, as Proposition 4.3 in Yang (2013) shows, uninorms satisfying t-weakening are t-norms. The standard completeness for t-norm logics introduced by Jenei and Montagna are well known (see Esteva et al. (2002), Jenei & Montagna (2002)). Thus, this standard completeness proof for UL_{wt} is not interesting since this logic is a t-norm logic, but not a uninorm logic. As a weakening-free logic, here we introduce UL_{cfr}, the UL with compensation-free reinforcement (cfr) (($\phi \& \psi$) \rightarrow ($\phi \land \psi$)) \lor (($\phi \lor \psi$) \rightarrow ($\phi \& \psi$)), and show that this system is standard complete, i.e., complete with respect to (w.r.t.) the real unit interval [0, 1].

The paper is organized as follows. In Section 2, we present the axiomatization of UL_{cfr} , which is obtained by adding (cfr) to UL. In Section 3, we then define algebraic structures corresponding to the logic UL_{cfr} , by a subvariety of the variety of commutative residuated lattices (i.e., the variety of UL_{cfr} -algebras), and show that UL_{cfr} is complete w.r.t. linearly ordered UL_{cfr} -algebras. This will ensure that UL_{cfr} is fuzzy in Cintula's sense in Cintula (2006). In Section 4, after defining compensation-freely reinforced uninorms, we note that t-weakening uninorms are t-norms. In Section 5, finally we provide standard completeness results for UL_{cfr} , using the method introduced in Yang (2009; 2013).¹)

For convenience, we shall adopt the notation and terminology similar to those in Cintula (2006), Esteva et al. (2002), Hájek

While uninorms have in general the properties of compensation and full reinforcement, t-norms and t-conorms do not. Thus, the standard completeness results show that this method works for full reinforcement, but not for compensation.

(1998), Metcalfe & Montagna (2007), Yang (2009; 2013), and assume familiarity with them (together with the results found therein).

2. Syntax

We base the compensation-freely reinforced fuzzy logic UL_{cfr} on a countable propositional language with formulas Fm built inductively as usual from a set of propositional variables VAR, binary connectives \rightarrow , &, \land , \lor , and constants T, F, f, t, with defined connectives:

df1.
$$\sim \phi := \phi \rightarrow \mathbf{f}$$
, and
df2. $\phi \leftrightarrow \psi := (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$.

We may define **t** as $\mathbf{f} \rightarrow \mathbf{f}$. We moreover define Φ^n_t as $\Phi_t \& \cdots \& \Phi_t$, n factors, where $\Phi_t := \Phi \land \mathbf{t}$. For the remainder we shall follow the customary notation and terminology. We use the axiom systems to provide a consequence relation.

We start with the following axiomatization of UL_{cfr} (UL plus (cfr)) as a compensation-freely reinforced (substructural) fuzzy logic.

Definition 2.1 UL_{cfr} consists of the following axiom schemes and rules:

A1. $\phi \rightarrow \phi$ (self-implication, SI) A2. $(\phi \land \psi) \rightarrow \phi$, $(\phi \land \psi) \rightarrow \psi$ (\land -elimination, \land -E) A3. $((\Phi \rightarrow \psi) \land (\Phi \rightarrow \chi)) \rightarrow (\Phi \rightarrow (\psi \land \chi))$ (\land -introduction, \land -I) A4. $\Phi \rightarrow (\Phi \lor \psi), \ \psi \rightarrow (\Phi \lor \psi)$ (\lor -introduction, \lor -I) A5. $((\Phi \rightarrow \chi) \land (\psi \rightarrow \chi)) \rightarrow ((\Phi \lor \psi) \rightarrow \chi)$ (\lor -elimination, \lor -E) A6. $\Phi \rightarrow \mathbf{T}$ (verum ex quolibet, VE) A7. $\mathbf{F} \rightarrow \Phi$ (ex falso quadlibet, EF) A8. $(\Phi \And \psi) \rightarrow (\psi \And \Phi)$ (\And -commutativity, \And -C) A9. $(\Phi \And \mathbf{t}) \leftrightarrow \Phi$ (push and pop, PP) A10. $(\Phi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\Phi \rightarrow \chi))$ (suffixing, SF) A11. $(\Phi \rightarrow (\psi \rightarrow \chi)) \leftrightarrow ((\Phi \And \psi) \rightarrow \chi)$ (residuation, RE) A12. $((\Phi \And \psi) \rightarrow (\Phi \land \psi)) \lor ((\Phi \lor \psi) \rightarrow (\Phi \And \psi))$ (compensation-free reinforcement, cfr) A13. $(\Phi \rightarrow \psi)_t \lor (\psi \rightarrow \Phi)_t$ (t-prelinearity, PL_t). $\Phi \rightarrow \psi, \Phi \vdash \psi$ (modus ponens, mp) $\Phi, \psi \vdash \Phi \land \psi$ (adjunction, adj)

Proposition 2.2 UL_{cfr} proves:

(1) $(\phi \& (\psi \& \chi)) \leftrightarrow ((\phi \& \psi) \& \chi)$ (&-associativity, AS).

In UL_{cfr} , **f** can be defined as \sim **t** and vice versa. A *theory* over UL_{cfr} is a set T of formulas. A *proof* in a sequence of formulas whose each member is either an axiom of UL_{cfr} or a member of T or follows from some preceding members of the sequence using the rules (mp) and (adj). T $\vdash \phi$, more exactly T $\vdash_{ULcfr} \phi$, means that ϕ is *provable* in T w.r.t. UL_{cfr} , i.e., there is a UL_{cfr} -proof of ϕ in T. The local deduction theorem (LDT) for UL_{cfr} is as follows:

328 Eunsuk Yang

Proposition 2.3 Let T be a theory, and ϕ , ψ formulas. T \cup { ϕ } $\vdash_{ULefr} \psi$ iff there is n such that T $\vdash_{ULefr} \phi^{n}_{t} \rightarrow \psi$.

Proof: See Novak (1990).

A theory T is *inconsistent* if $T \vdash F$; otherwise it is *consistent*. For convenience, "~", " \land ", " \lor ", and " \rightarrow " are used ambiguously as propositional connectives and as algebraic operators, but context should make their meaning clear.

3. Semantics

Suitable algebraic structures for UL_{cfr} are obtained as a subvariety of the variety of commutative monoidal residuated lattices.

Definition 3.1 A pointed bounded commutative residuated compensation-freely reinforced lattice is a structure $\mathbf{A} = (\mathbf{A}, \top, \bot, \mathbf{t}, \mathbf{f}, \land, \lor, *, \rightarrow)$ such that:

- (I) (A, \top , \bot , \land , \lor) is a bounded lattice with top element \top and bottom element \bot .
- (Π) (A, *, t) is a commutative monoid.
- (III) $y \le x \rightarrow z$ iff $x * y \le z$, for all $x, y, z \in A$ (residuation).
- (IV) $t \leq ((x^*y) \rightarrow (x \land y)) \lor ((x \lor y) \rightarrow (x^*y))$, for all x, $y \in A$ (compensation-free reinforcement).

To define the above lattice we may take in place of (III) a family of equations as in Hájek (1998). Using \rightarrow and f we can define t as $f \rightarrow f$, and \sim as in (df1). In the lattice, \sim is a *weak* negation in the sense that for all x, $x \leq \sim \sim x$ holds in it. Then, UL_{cfr}-algebras the class of which characterizes UL_{cfr} are defined as follows.

Definition 3.2 (UL_{cfr}-algebra) A UL_{cfr} -algebra is a pointed bounded commutative residuated compensation-freely reinforced lattice satisfying the condition: for all x, y,

 $(pl_t) \ t \ \leq \ (x \ \rightarrow \ y)_t \ \lor \ (y \ \rightarrow \ x)_t.$

A UL_{cfr}-algebra is said to be *linearly ordered* if the ordering of its algebra is linear, i.e., $x \le y$ or $y \le x$ (equivalently, $x \land y$ = x or $x \land y = y$) for each pair x, y. In linearly ordered algebras, we in particular call monoids satisfying (IV) *compensation-freely reinforced monoids*.

Definition 3.3 (Evaluation) Let \mathscr{A} be an algebra. An \mathscr{A} -evaluation is a function $v : FOR \to \mathscr{A}$ satisfying: $v(\Phi \to \Psi) = v(\Phi) \to v(\Psi)$, $v(\Phi \land \Psi) = v(\Phi) \land v(\Psi)$, $v(\Phi \lor \Psi) = v(\Phi) \lor v(\Psi)$, $v(\Phi & \Psi) = v(\Phi) * v(\Psi)$, $v(F) = \bot$, v(f) = f, (and hence $v(\sim \Phi) = \sim v(\Phi)$, $v(T) = \top$, and v(t) = t).

Definition 3.4 Let \mathscr{A} be a UL_{cfr}-algebra, T a theory, Φ a formula, and K a class of UL_{cfr}-algebras.

(i) (Tautology) ϕ is a *t*-tautology in \mathcal{A} , briefly an \mathcal{A} -tautology

(or \mathcal{A} -valid), if $v(\phi) \ge t$ for each \mathcal{A} -evaluation v.

- (ii) (Model) An A-evaluation v is an A-model of T if v(Φ) ≥
 t for each Φ ∈ T. By Mod(T, A), we denote the class of A-models of T.
- (iii) (Semantic consequence) φ is a semantic consequence of T w.r.t. K, denoting by T ⊨_K φ, if Mod(T, A) = Mod(T ∪ {φ}, A) for each A ∈ K.

Definition 3.5 (UL_{cfr}-algebra) Let \mathcal{A} , T, and Φ be as in Definition 3.4. \mathcal{A} is a UL_{cfr} -algebra iff whenever Φ is UL_{cfr} -provable in T (i.e. T $\vdash_{ULcfr} \Phi$), it is a semantic consequence of T w.r.t. the set { \mathcal{A} }, i.e. T $\models_{\{\mathcal{A}\}} \Phi$), \mathcal{A} a UL_{cfr} -algebra. By $MOD^{(l)}(UL_{cfr})$, we denote the class of (linearly ordered) UL_{cfr} -algebras. Finally, we write T $\models^{(l)}_{ULcfr} \Phi$ in place of T $\models_{MOD}^{(l)}(UL_{cfr}) \Phi$.

Note that since each condition for the UL_{cfr} -algebra has the form of an equation or can be defined in an equation, it can be ensured that the class of all UL_{cfr} -algebras is a variety.

Let **A** be a UL_{cfr}-algebra. We first show that classes of provably equivalent formulas form a UL_{cfr}-algebra. Let T be a fixed theory over UL_{cfr}. For each formula Φ , let $[\Phi]_T$ be the set of all formulas Ψ such that $T \vdash_{ULcfr} \Phi \leftrightarrow \Psi$ (formulas T-provably equivalent to Φ). A_T is the set of all the classes $[\Phi]_T$. We define that $[\Phi]_T \rightarrow [\Psi]_T = [\Phi \rightarrow \Psi]_T$, $[\Phi]_T * [\Psi]_T = [\Phi \&$ $\Psi]_T$, $[\Phi]_T \land [\Psi]_T = [\Phi \land \Psi]_T$, $[\Phi]_T \lor [\Psi]_T = [\Phi \lor \Psi]_T$, $\bot =$ $[\mathbf{F}]_T$, $\top = [\mathbf{T}]_T$, $\mathbf{t} = [\mathbf{t}]_T$, and $\mathbf{f} = [\mathbf{f}]_T$. By A_T , we denote this algebra.

Proposition 3.6 For T a theory over L, A_T is a UL_{cfr}-algebra.

Proof: Note that A1 to A7 ensure that \land and \lor satisfy (I) in Definition 3.1; that AS, A8, A9 ensure that & satisfies (II); that A11, A12 and A13 ensure that (III), (IV), and (pl_t) hold. It is obvious that $[\Phi]_T \leq [\Psi]_T$ iff $T \vdash_{ULefr} \Phi \leftrightarrow (\Phi \land \Psi)$ iff $T \vdash_{ULefr} \Phi \rightarrow \Psi$. Finally, recall that A_T is a UL_{efr} -algebra iff $T \vdash_{ULefr} \Psi$ implies $T \models_{ULefr} \Psi$, and observe that for Φ in T, since $T \vdash_{ULefr} t \rightarrow \Phi$, it follows that $[t]_T \leq [\Phi]_T$. Thus, it is a UL_{efr} -algebra. \Box

We next note that the nomenclature of the prelinearity condition is explained by the subdirect representation theorem below.

Proposition 3.7 Each UL_{cfr} -algebra is a subdirect product of linearly ordered UL_{cfr} -algebras.

Proof: Its proof is analogous to that of Lemma 3.7 in Cintula (2006). \Box

Theorem 3.8 (Strong completeness) Let T be a theory, and ϕ a formula. T $\vdash_{ULefr} \phi$ iff T $\models_{ULefr} \phi$ iff T $\models_{ULefr}^{l} \phi$.

Proof: (i) $T \vdash_{ULcfr} \Phi$ iff $T \models_{ULcfr} \Phi$. The left-to-right direction follows from definition. The right-to-left direction is as

follows: from Proposition 3.6, we obtain $A_T \subseteq MOD(L)$, and for A_T -evaluation v defined as $v(\psi) = [\psi]_T$, it holds that $v \in Mod(T, A_T)$. Thus, since from $T \models_{ULefr} \Phi$ we obtain that $[\Phi]_T = v(\Phi) \ge t$, $T \vdash_{ULefr} t \rightarrow \Phi$. Then, since $T \vdash_{ULefr} t$, by (mp) $T \vdash_{ULefr} \Phi$, as required.

(ii) $T \models_{ULefr} \phi$ iff $T \models_{ULefr}^{1} \phi$. It follows from Proposition 3.7. \Box

4. Compensation-freely reinforced uninorms and their residua

In this section, using *1*, *0*, and some *e*, and ∂ in the real unit interval [0, 1], we shall express \top , \bot , t, and f, respectively. We also define standard UL_{cfr}-algebras and compensation-freely reinforced uninorms.

Definition 4.1 A UL_{cfr}-algebra is *standard* iff its lattice reduct is [0, 1].

In standard UL_{efr} -algebras, the monoid operator * is a compensation-freely reinforced uninorm. We first introduce uninorms.

Definition 4.2 A *uninorm* is a function $\bigcirc : [0, 1]^2 \rightarrow [0, 1]$ such that for some $e \in [0, 1]$ and for all x, y, $z \in [0, 1]$:

(a) $x \bigcirc y = y \bigcirc x$ (commutativity), (b) $x \bigcirc (y \oslash z) = (x \oslash y) \bigcirc z$ (associativity),

An Axiomatic Extension of the Uninorm Logic Revisited 333

(c) $x \le y$ implies $x \bigcirc z \le y \bigcirc z$ (monotonicity), and (d) $e \bigcirc x = x$ (identity).

Uninorms satisfying (1-identity) e = 1 are *t*-norms. \bigcirc is residuated iff there is \rightarrow : $[0, 1]^2 \rightarrow [0, 1]$ satisfying (residuation) on [0, 1]. A uninorm is called *conjunctive* if $0 \bigcirc 1 = 0$, and *disjunctive* if $0 \bigcirc 1 = 1$. For some $\partial \in [0, 1]$, a residuated uninorm has weak negation n defined as $n(x) := x \rightarrow \partial$ because $x \bigcirc (x \rightarrow \partial) \le \partial$ holds in it and so by residuation $x \bigcirc (x \rightarrow \partial) \le \partial$ iff $x \le (x \rightarrow \partial) \rightarrow \partial$.

The most important property of a uninorm is that *left-continuity* holds in it. Given a uninorm \bigcirc , *residuated implication* \rightarrow determined by \bigcirc is defined as $x \rightarrow y := \sup\{z \in [0, 1]: x \bigcirc z \le y\}$ for all x, $y \in [0, 1]$. Then, we can show that for any uninorm \bigcirc , \bigcirc and its residuated implication \rightarrow form a residuated pair iff \bigcirc is conjunctive and left-continuous in both arguments (see Proposition 5.4.2 in Gottwald (2001)).

A compensation-freely reinforced uninorm is defined as follows.

Definition 4.3 A compensation-freely reinforced uninorm is a residuated uninorm satisfying for all $x, y \in [0, 1]$:

(cfr) $x \bigcirc y \le \min\{x, y\}$ or $\max\{x, y\} \le x \bigcirc y$.

Notice that (cfr) ensures that compensation-freely reinforced uninorms can be defined as residuated uninorms satisfying: for all x, $y \in [0, 1]$, (cfr ') $e \leq \max\{(x \odot y) \rightarrow \min(x, y), \max(x, y), \max($

 $y) \rightarrow (x \bigcirc y)\}.$

Example 4.4 (i) (Yang (2011)) Given a *fixed-point weak* negation n, i.e., a negation n satisfying: for all $x \in [0, 1]$,

- (a) n(t) = t,
- (b) $n(n(x)) \ge x$, and
- (c) n(0) = 1 and n(1) = 0,

we can construct a conjunctive left-continuous idempotent uninorm \bigcirc given by, for all x, y $\in [0, 1]$:

$$x \bigcirc y = \min(x, y)$$
 if $y \le n(x)$,

max(x, y) otherwise.

(ii) (Klement et al. (2000)) Given the standard negation $n_s = 1$ - x, we can construct a conjunctive left-continuous idempotent uninorm \bigcirc_s given by, for all x, y $\in [0, 1]$:

 $x \bigcirc_s y = min(x, y)$ if $x + y \le 1$,

max(x, y) otherwise.

(iii) (Klement et al. (2000)) Consider a conjunctive left-continuous idempotent uninorm \bigcirc with a negation n. Then its residuated implication \rightarrow is given by

$$x \rightarrow y = max(n(x), y)$$
 if $x \le y$,
min(n(x), y) otherwise.

(iv) (De Baets & Fodor (1999), Klement et al. (2000)) Consider the standard negation n_s . Then the residiated implication \rightarrow_s of the corresponding conjunctive left-continuous idempotent uninorm \bigcirc_s is given by

> $x \rightarrow_s y = max(1-x, y)$ if $x \le y$, min(1-x, y) otherwise.

The structure $\mathbf{A}_s = ([0, 1], 1, 0, \frac{1}{2}, \frac{1}{2}, \min, \max, \bigcirc_s, \rightarrow_s)$, where \bigcirc_s and \rightarrow_s are the conjunctive left-continuous idempotent uninorm and its residuum, is known to us as the algebra for the involutive uninorm mingle logic IUML.

Fact 4.5 (Metcalfe & Montagna (2007)) Let $A_s = ([0, 1], 1, 0, \frac{1}{2}, \frac{1}{2}, \min, \max, \bigcirc_s, \rightarrow_s)$, where:

 $x \bigcirc_s y = \min(x, y)$ if $x + y \le 1$, max(x, y) otherwise.

 ϕ is valid in all standard IUML-algebras iff ϕ is valid in the IUML-algebra A_s .

Note that the conjunctive left-continuous idempotent uninorm \bigcirc_s does not satisfy (1-identity), and so not forms t-norms.

Note 4.6 In Yang (2013), Yang verified that uninorms satisfying (t-weakening) are t-norms. We remind this: Given any t-weakening uninorm \bigcirc , for all x < e, we have min $\{x \bigcirc 1, e\} \le x$, and hence, $x \bigcirc 1 \le x$. Since $x = x \bigcirc e \le x \bigcirc$ 1, for all x < e, we have $x \bigcirc 1 = x$. By the left-continuity of \bigcirc , $e \bigcirc 1 = \sup\{x \bigcirc 1: x < e\} = \sup\{x: x < e\} = e$. But since $e \bigcirc 1 = 1$, 1 = e, and the uninorm is a t-norm.

5. Standard completeness

We first show that finite or countable linearly ordered

 UL_{cfr} -algebras are embeddable into a standard algebra. (For convenience, we add less than relation symbol to such algebras.)

Proposition 5.1 For every finite or countable linearly ordered UL_{efr} -algebra $A = (A, \leq_A, \top, \bot, t, f, \land, \lor, *, \rightarrow)$, there is a countable ordered set X, a binary operation \bigcirc , and a map h from A into X such that the following conditions hold:

- (I) X is densely ordered, and has a maximum Max, a minimum Min, and special elements e, ∂ .
- (II) (X, \bigcirc , \leq , e) is a linearly ordered monotonic commutative compensation-freely reinforced monoid.
- (III) \bigcirc is conjunctive and left-continuous w.r.t. the order topology on (X, \leq) .
- (IV) h is an embedding of the structure (A, ≤_A, ⊤, ⊥, t, f, ∧, ∨, *) into (X, ≤, Max, Min, e, ∂, min, max, ○), and for all m, n ∈ A, h(m → n) is the residuum of h(m) and h(n) in (X, ≤, Max, Min, e, ∂, max, min, ○).

Proof: For convenience, we assume A as a subset of $\mathbf{Q} \cap [0, 1]$ with finite or countable elements, where 0 and 1 are least and greatest elements, each of which corresponds to \top , \perp , respectively. Let

$$X = \{(m, x): m \in A \setminus \{0 \ (= \bot)\} \text{ and } x \in Q \cap (0, m]\} \cup \{(0, 0)\}.$$

For (m, x), $(n, y) \in X$, we define:

An Axiomatic Extension of the Uninorm Logic Revisited 337

 $(m, x) \leq (n, y)$ iff either $m \leq_A n$, or $m =_A n$ and $x \leq y$.

It is clear that \leq is a linear order with maximum (1, 1), minimum (0, 0), and special elements e = (t, t), $\partial = (f, f)$. Furthermore, \leq is dense: let (m, x) \leq (n, y). Then either m \leq_A n or m =_A n and x \leq y. If the first is the case, then (m, x) \leq (n, y/2) \leq (n, y). Otherwise, (m, x) \leq (n, x+y/2) \leq (n, y). This proves (I).

For convenience, we will henceforth drop the index A in \leq_A and $=_A$, if we need not distinguish them. But context should make clear what we mean.

Define for (m, x), $(n, y) \in X$:

We verify that \bigcirc satisfies (II) (noting that (cfr) of * ensures that for all m, $n \in A$, m * n \le m \land n or m \lor n \le m * n). (1) Commutativity. It is obvious that \bigcirc is commutative.

(2) Identity. We prove that (t, t) is the unit element, i.e., (t, t) \bigcirc (m, x) = (m, x). (i) Let (t, t) \lt (m, x). Since t * m = m = t \lor m, (t, t) \bigcirc (m, x) = max{(t, t), (m, x)} = (m, x). (ii) Let (m, x) \le (t, t). Since t * m = m = t \land m, (t, t) \bigcirc (m, x) = min{(t, t), (m, x)} = (m, x).

338 Eunsuk Yang

(3) Monotonicity. Since ○ is commutative, it suffices to prove that if (l, x) ≤ (m, y), then for all (n, z) ∈ X, (l, x) ○ (n, z) ≤ (m, y) ○ (n, z). We distinguish several cases:

• Case (i). $l * n = l \lor n$ and $m * n = m \lor n$: Subcase (i-a). (l, x) > e or (n, z) > e. (a-1) (m, y) > e or (n, z) > e. If e < (l, x), (n, z), (m, y), then $(l, x) \bigcirc (n, z) = max\{(l, x), (n, z)\} \le max\{(m, y), (n, z)\}$ z)} = (m, y) \bigcirc (n, z). If (n, z) $\le e < (1, x) \le (m, y)$, (1, x) \bigcirc (n, z) = max{(1, x), (n, z)} = (1, x) \le (m, y) = max{(m, x)} = max{(m, y)} = y), (n, z)} = (m, y) \bigcirc (n, z). If (l, x) $\le e <$ (n, z), (l, x) $(n, z) = \max\{(1, x), (n, z)\} = (n, z) \le \max\{(m, y), (n, z)\} =$ $(m, y) \bigcirc (n, z).$ (a-2) (m, y), (n, z) $\leq e$. This is not the case by the supposition. Subcase (i-b). (l, x), (n, z) $\leq e$. (b-1) (m, y) > e. Then (l, x) \odot (n, z) = min{(l, x), (n, z)} < $(m, y) = max\{(m, y), (n, z)\} = (m, y) \bigcirc (n, z).$ (b-2) (m, y) $\leq e$. Then l = m = n, and so $(l, x) \circ (n, z) =$ $\min\{(1, x), (n, z)\} \leq \min\{(m, y), (n, z)\} = (m, y) \circ (n, z).$

• Case (ii). $l * n = l \land n$ and $m * n = m \land n$. Its proof is analogous to that of Case (i).

• Case (iii). $l * n = l \lor n$ and $m * n \neq m \lor n$. We need to consider the subcases (a) $m * n = m \land n$ and (b) m *

 $n \neq m \land n.$ Subcase (iii-a). $m * n = m \land n.$ Since $m * n \neq m \lor n$ and so $m \neq n, l = n < m, t.$ Then $(l, x) \bigcirc (n, z) = min\{(l, x), (n, z)\} \le min\{(m, y), (n, z)\} = (m, y) \bigcirc (n, z).$ Subcase (iii-b). $m * n \neq m \land n:$ (b-1) m * n > t. Then, since $l * n \le m * n$ and $(m, y) \bigcirc (n, z)$. (b-1) m * n > t. Then, since $l * n \le m * n$ and $(m, y) \bigcirc (n, z)$. (b-2) $m * n \le t.$ This is not the case because it implies l = n $= l * n < m * n \le t$, but $m * n \le m \land n$ or $m \lor n \le m$ * n and so $m * n < m \land n = n.$

• Case (iv). $l * n \neq l \lor n$ and $m * n = m \lor n$. Its proof is analogous to that of Case (iii).

• Case (v). $l * n \neq l \lor n, l \land n, and m * n \neq m \lor n,$ $m \land n.$ Subcase (v-a). $l * n, m * n > t. (l, x) \bigcirc (n, z) = (l * n, l * n) \le (m * n, m * n) = (m, y) \bigcirc (n, z).$ Subcase (v-b). $l * n \le t < m * n.$ If $n \le t$, then $m * n \le t$

m \vee n, and otherwise, $1 \wedge n \leq 1 * n$. Thus, this is not the case.

Subcase (v-c). 1 * n > t > m * n. By the supposition, this is not the case.

Subcase (v-d). Otherwise, i.e., l * n, $m * n \le t$. $(l, x) \bigcirc (n, z)$ = $(l * n, l * n) \le (m * n, m * n) = (m, y) \bigcirc (n, z)$.

(4) Compensation-free reinforcement. (i) Let m * n \leq m \wedge n. If

 $m * n = m \land n \leq t$, then $(m, x) \circ (n, y) = \min\{(m, x), (n, y)\}$. If $m * n = m \land n > t$, then, $(m, x) \circ (n, y) = \max\{(m, x), (n, y)\}$. Otherwise, i.e., if $m * n < m \land n$, then $(m, x) \circ (n, y) < \min\{(m, x), (n, y)\}$. (ii) Let $m \lor n \leq m * n$. Its proof is analogous to that of (i).

(5) Associativity. We show that for all (l, x), (m, y), (n, z) \in X,

 $(l, x) \circ ((m, y) \circ (n, z)) = ((l, x) \circ (m, y)) \circ (n, z)$ (AS).

Without further mention, we will use the fact that * is associative and compensation-freely reinforced. We distinguish several cases:

• Case (i). $l * (m * n) = \lor (l, m, n)$. If either t < l and t < l * (m * n), or t < m and t < l * (m * n), or t < n and t < l * (m * n), or t < n and t < l * (m * n), or t < n and t < l * (m * n), then both sides of (AS) are equal to max{(l, x), (m, y), (n, z)}. Otherwise, both sides of (AS) are equal to min{(l, x), (m, y), (n, z)}.

• Case (ii). $l * (m * n) = \land (l, m, n)$. If t < l = m = n, both sides of (AS) are equal to max{(l, x), (m, y), (n, z)}. Otherwise, both sides of (AS) are equal to min{(l, x), (m, y), (n, z)}.

• Case (iii). $l * (m * n) \neq \lor (l, m, n), \land (l, m, n), \text{ and } l * (m * n) \in \{l, m, n\}$. This is not the case because $\lor (l, m, n) \leq l * (m * n) \text{ or } l * (m * n) \leq \land (l, m, n) \text{ by (cfr)}.$

An Axiomatic Extension of the Uninorm Logic Revisited 341

• Case (iv). $l * (m * n) \notin \{l, m, n\}$ and either $l * (m * n) = 1 \lor (m * n) = m * n$ or $l * (m * n) = 1 \land (m * n) = m * n$. Then, since (cfr) ensures that either $t \leq l, m \lor n < m * n$ or $t \geq l, m \land n > m * n$, both sides of (AS) are equal to (m * n, m * n).

• Case (v). $l * (m * n) \notin \{l, m, n\}$ and $l * (m * n) \neq l$ $\lor (m * n), l \land (m * n)$. Then, we need to consider the cases l * (m * n) > t and $l * (m * n) \leq t$. Both sides of (AS) are equal to (l * (m * n), l * (m * n)).

We then prove (III). Since 0 * 1 = 0, it is immediate that \bigcirc is conjunctive, i.e., $(0, 0) \bigcirc (1, 1) = (0, 0)$.

For left-continuity of \bigcirc , we prove that if $\langle (m_i, x_i): i \in N \rangle$ is any increasing sequence (w.r.t. \leq) of elements of X such that $\sup\{(m_i, x_i): i \in N\} = (m, x)$, then for all $(n, y) \in X$, $\sup\{(m_i, x_i) \bigcirc (n, y): i \in N\} = (m, x) \bigcirc (n, y)$. Note that for almost all i, $m_i = m$ (otherwise (m, x/2) < (m, x) would be an upper bound of the sequence $\langle (m_i, x_i): i \in N \rangle$). By deleting a finite number of elements of the sequence $\langle (m_i, x_i): i \in N \rangle$, we can suppose that for all i, $m_i = m$ and that $x = \sup\{x_i: i \in N\}$. Then we need to consider the following cases:

Case (i). $m * n = m \lor n$. In case m > t or n > t, $(m, x) \bigcirc (n, y) = max\{(m, x), (n, y)\}, (m_i, x_i) \bigcirc (n, y) = max\{(m_i, x_i), (n, y)\}$, and left-continuity follows from left-continuity of max operation. Otherwise, i.e., if $m = n \le t$, $(m, x) \oslash (n, y) = min\{(m, x), (n, y)\}$ and for all i, $(m_i, x_i) \oslash (n, y) = (min\{(m_i, x_i) \oslash (n, y)\}$

x), (n, y)}), and left-continuity follows from left-continuity of min operation.

Case (ii). $m * n = m \land n$. Its proof is analogous to that of Case (i).

Case (iii). $m * n \neq m \lor n, m \land n$. Then, $(m, x) \bigcirc (n, y) = (m * n, m * n)$ and for all i, $(m_i, x_i) \oslash (n, y) = (m_i * n, m_i * n) = (m * n, m * n)$. Thus $(m, x) \oslash (n, y) = (m_i, x_i) \oslash (n, y)$. This completes the proof of (III).

We finally prove (IV). First define for every $m \in A$,

$$h(m) = (m, m).$$

It is clear that h is increasing and so one-to-one. h(1), h(0), h(t), and h(f) are top, bottom, and special elements of (X, \leq) ; and h(t) is the unit element of \bigcirc . We then show that h(m) \bigcirc h(n) = h(m * n):

Case (i). t < m, n. h(m) \bigcirc h(n) = (m, m) \bigcirc (n, n) = (m * n, m * n) = h(m * n).

Case (ii). $m \leq t < n$.

Subcase (ii-a). $m * n = m \lor n$. $h(m) \bigcirc h(n) = (m, m) \bigcirc (n, n) = max\{(m, m), (n, n)\} = (n, n) = h(n) = h(m * n).$

Subcase (ii-b). $m * n = m \land n$. $h(m) \bigcirc h(n) = (m, m) \bigcirc$ (n, n) = min{(m, m), (n, n)} = (m, m) = h(m) = h(m * n).

Case (iii). $n \le t < m$. Its proof is analogous to that of Case (ii). Case (iv). $t \ge m$, n. Its proof is analogous to that of Case (i). Thus h is an embedding of partially ordered monoids. It remains to prove that for every l, m, $n \in A$, $h(l \rightarrow m)$ is the

An Axiomatic Extension of the Uninorm Logic Revisited 343

residuum of h(l) and h(m) w.r.t. \bigcirc , i.e., (i) h(l) \bigcirc h(l \rightarrow m) \leq h(m), and (ii) if h(l) \bigcirc (n, z) \leq h(m), then (n, z) \leq h(l \rightarrow m). (i). Consider the case t < l \leq m. h(l) \bigcirc h(l \rightarrow m) = (l, 1) \bigcirc (l \rightarrow m, l \rightarrow m) = (l * (l \rightarrow m), l * (l \rightarrow m)) \leq (m, m)

= h(m). Proof of the other cases is analogous.

(ii). By contraposition, we prove this. Suppose that $h(l \rightarrow m) < (n, z)$, i.e., $(l \rightarrow m, l \rightarrow m) < (n, z)$. Since $l \rightarrow m$ is the residuum of l and m in A, m < l * n. Thus (m, m) < (l, l) \bigcirc (n, z). This completes the proof. \square

Proposition 5.2 Every countable linearly ordered UL_{cfr} -algebra can be embedded into a standard algebra.

Proof: In an analogy to the proof of Theorem 3.2 in Jenei & Montagna (2002), we prove this. Let X, A, etc. be as in Proposition 5.1. Since (X, \leq) is a countable, dense, linearly-ordered set with maximum and minimum, it is order isomorphic to $(\mathbf{Q} \cap [0, 1], \leq)$. Let g be such an isomorphism. If (I), (II), (III), and (IV) hold, letting for $\alpha, \beta \in [0, 1], \alpha \circ$ ' $\beta = g(g^{-1}(\alpha) \circ g^{-1}(\beta))$, and, for all $m \in A$, h'(m) = g(h(m)), we obtain that $\mathbf{Q} \cap [0, 1], \leq$, 1, 0, e, ∂, \circ ', h' satisfy the conditions (I) to (IV) of Proposition 5.1 whenever X, \leq , Max, Min, e, ∂, \circ , and h do. Thus we can without loss of generality assume that $\mathbf{X} = \mathbf{Q} \cap [0, 1]$ and $\leq = \leq$.

Now we define for α , $\beta \in [0, 1]$,

$$\alpha \bigcirc " \beta = sup_{x \in X: x \le \alpha} sup_{y \in X: y \le \beta} x \bigcirc y.$$

344 Eunsuk Yang

Commutativity of \bigcirc " follows from that of \bigcirc . Its monotonicity, identity, and compensation-free reinforcement are easy consequences of the definition. Furthermore, it follows from the definition that \bigcirc " is conjunctive, i.e., $0 \bigcirc$ " 1 = 0.

We prove left-continuity. Suppose that $\langle \alpha_n: n \in N \rangle$, $\langle \beta_n: n \in N \rangle$ are increasing sequences of reals in [0, 1] such that sup $\{\alpha_n: n \in N\} = \alpha$ and sup $\{\beta_n: n \in N\} = \beta$. By the monotonicity of \bigcirc ", sup $\{\alpha_n \bigcirc$ " $\beta_n\} = \alpha \bigcirc$ " β . Since the restriction of \bigcirc " to $\mathbf{Q} \cap [0, 1]$ is left-continuous, we obtain

$$\begin{array}{l} \mathfrak{a} \bigcirc \ \ \ \ \beta = \sup\{q \bigcirc \ \ \ r: q, r \in \mathbf{Q} \cap [0, 1], q \le \mathfrak{a}, r \le \beta\} \\ = \sup\{q \bigcirc \ \ \ r: q, r \in \mathbf{Q} \cap [0, 1], q < \mathfrak{a}, r < \beta\}. \end{array}$$

For each $q < \alpha, \ r < \beta,$ there is n such that $q < \alpha_n$ and $r < \beta_n.$ Thus,

$$\begin{split} \sup\{\alpha_n \ \bigcirc \ '' \ \beta_n: n \ \in \ N\} \ \ge \ \sup\{q \ \bigcirc \ '' \ r: \ q, \ r \ \in \ Q \ \cap \ [0, \ 1], \\ q \ < \ \alpha, \ r \ < \ \beta\} \ = \ \alpha \ \bigcirc \ '' \ \beta. \end{split}$$

Hence, \bigcirc " is a left-continuous compensation-freely reinforced uninorm on [0, 1].

It is an easy consequence of the definition that \bigcirc'' extends \bigcirc . By (I) to (IV), h is an embedding of (A, \leq_A , \top , \bot , t, f, \land , \lor , *) into ([0, 1], \leq , 1, 0, e, ∂ , min, max, \bigcirc''). Moreover, \bigcirc'' has a residuum, calling it \rightharpoonup .

We finally prove that for x, $y \in A$, $h(x \rightarrow y) = h(x) \rightarrow h(y)$.

By (IV), $h(x \rightarrow y)$ is the residuum of h(x) and h(y) in ($\mathbf{Q} \cap [0, 1], \leq, 1, 0, e, \partial, \min, \max, \bigcirc$). Thus

$$h(x) \bigcirc " h(x \rightarrow y) = h(x) \bigcirc h(x \rightarrow y) \le h(y).$$

Suppose toward contradiction that there is $a > h(x \rightarrow y)$ such that $a \circ '' h(x) \le h(y)$. Since $\mathbf{Q} \cap [0, 1]$ is dense in [0, 1], there is $q \in \mathbf{Q} \cap [0, 1]$ such that $h(x \rightarrow y) < q \le a$. Hence $q \circ '' h(x) = q \circ h(x) \le h(y)$, contradicting (IV). \Box

Theorem 5.3 (Strong standard completeness) For UL_{cfr} , the following are equivalent:

(1) T $\vdash_{\text{ULcfr}} \Phi$.

(2) For every standard UL_{eff}-algebra and evaluation v, if $v(\Psi) \ge e$ for all $\Psi \in T$, then $v(\Phi) \ge e$.

Proof: (1) to (2) follows from definition. We prove (2) to (1). Let ϕ be a formula such that $T \nvDash_{ULefr} \phi$, A a linearly ordered UL_{efr} -algebra, and v an evaluation in A such that $v(\psi) \ge t$ for all $\psi \in T$ and $v(\phi) < t$. Let h' be the embedding of A into the standard UL_{efr} -algebra as in proof of Proposition 5.2. Then h' \circ v is an evaluation into the standard UL_{efr} -algebra such that h' \circ $v(\psi) \ge e$ and yet h' \circ $v(\phi) < e$. \Box

Theorem 5.3 ensures that UL_{cfr} is complete w.r.t. left-continuous conjunctive compensation-freely reinforced uninorms and their residua, i.e., for each formula ϕ , if $\nvdash_{ULcfr} \phi$, then there is a

left-continuous conjunctive compensation-freely reinforced uninorm \bigcirc and an evaluation v into ([0, 1], \bigcirc ", \rightharpoonup , \leq , 1, 0, e, ∂), where \rightharpoonup is the residuum of \bigcirc ", such that v(Φ) < e.

6. Concluding remark

We investigated (not merely algebraic completeness but also) standard completeness for UL_{cfr} . This work can be generalized to the systems, which are axiomatic extensions of UL_{cfr} . We shall investigate this in some subsequent paper.

References

- Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic Properties", Archive for Mathematical Logic.
- De Baets, B. and Fodor, J. (1999), "Residual Operators of Uninorms", *Soft Computing* 3, pp. 89-100.
- Esteva, F., Gispert, L., Godo, L., and Montagna, F. (2002), "On the Standard and Rational Completeness of Some Axiomatic Extensions of the Monoidal T-norm Logic", *Studia Logica* 71, pp. 199-226.
- Gottwald, S. (2001), A Treatise on Many-valued Logics, Baldock, Research Studies Press LTD.
- Hájek, P. (1998), Metamathematics of Fuzzy Logic, Amsterdam, Kluwer.
- Jenei, S and Montagna, F. (2002), "A Proof of Standard Completeness for Esteva and Godo's Logic MTL", *Studia Logica* 70, pp. 183-192.
- Klement, E. P., Mesiar, R., and Pap, E. (2000), Triangular Norms, Dordrecht, Kluwer.
- Metcalfe, G and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic 72, pp. 834-864.
- Novak, V. (1990), "On the Syntactico-semantical Completeness of First-order Fuzzy Logic I, II", *Kybernetika* 26, pp. 47-66.
- Yang, E. (2009), "On the Standard Completeness of an Axiomatic Extension of the Uninorm Logic", Korean Journal of Logic 12(2), pp. 115-139.
- Yang, E. (2011), "Standard Completeness for the Weak Uninorm Mingle Logic WUML", Korean Journal of Logic 14(1), pp. 55-75.

348 Eunsuk Yang

Yang, E. (2013), "Standard Completeness for MTL", Korean Journal of Logic 16(3), pp. 437-452.

전북대학교 철학과, 비판적사고와논술연구소 Department of Philosophy & Institute of Critical Thinking and Writing, Chonbuk National University eunsyang@jbnu.ac.kr

유니놈 논리의 확장을 재고함

양 은 석

이 글에서 우리는 보상 없는 강화 (cfr) ((Φ & Ψ) → (Φ ∧ Ψ)) ∨ ((Φ ∨ Ψ) → (Φ & Ψ))를 갖는 유니놈 논리의 확장에 대해 표 준 완전성이 제공될 수 있다는 것을 보인다. 이를 위하여, 먼저 보 상 없는 강화를 갖는 유니놈 논리 UL_{cfr}을 소개한다. 이 체계에 상 응하는 대수적 구조를 정의한 후, UL_{cfr}이 대수적으로 완전하다는 것을 보인다. 다음으로, UL_{cfr}이 표준적으로 완전하다는 것 즉 단위 실수 [0, 1]에서 완전하다는 것을 Yang (2009)에서의 방법을 사용 하여 보인다.

주요어: (보상 없는 강화) 퍼지 논리, 유니놈, t-규범, 대수적 완 전성, 표준 완전성