An Axiomatic Extension of the Uninorm Logic Revisited＊

【Abstract】In this paper，we show that the standard completeness for the extension of UL with compensation－free reinforcement（cfr）（（ Φ \＆$\Psi) \rightarrow(\Phi$ $\wedge \Psi)) \vee((\Phi \vee \Psi) \rightarrow(\phi \& \Psi))$ can be established．More exactly，first，the compensation－freely reinforced uninorm logic $\mathbf{U} \mathbf{L}_{\text {cfr }}$（the $\mathbf{U L}$ with（cfr））is introduced．The algebraic structures of $\mathbf{U} \mathbf{L}_{\text {cfr }}$ are then defined，and its algebraic completeness is established．Next，standard completeness（i．e．completeness on $[0,1])$ is established for $\mathbf{U} \mathbf{L}_{\text {cfr }}$ by using the method introduced in Yang （2009）．

【Key Words】（compensation－freely reinforced）fuzzy logic，uninorm，t－norm， algebraic completeness，standard completeness．

접수일자：2014．02．24 심사 및 수정완료일：2014．04．25 게재확정일：2014．05．29
＊This paper was supported by research funds of Chonbuk National University in 2014．I must thank the anonymous referees for their helpful comments．

1. Introduction

This paper is a continuation of the work in Yang (2013). First, note that uninorms satisfying t -weakening are t -norms and so the standard completeness proof for the t-weakening uninorm logic $\mathbf{U} \mathrm{L}_{\mathrm{W}}$, the uninorm logic $\mathbf{U L}$ with \mathbf{t}-weakening $\left(\mathrm{W}_{\mathrm{t}}\right)((\Phi \& \Psi) \wedge$ t) $\rightarrow \Phi$, introduced in Yang (2009) is not interesting in the sense that such proof is not for a weakening-free uninorm logic. In this paper, we show that such standard completeness can be established for the extension of $\mathbf{U L}$ with compensation-free reinforcement (cfr) $((\Phi \& \Psi) \rightarrow(\Phi \wedge \Psi)) \vee((\Phi \vee \Psi) \rightarrow(\Phi$ \& $\Psi)$) as a weakening-free uninorm logic.

We first reconsider the following statements in Yang (2009).

> The starting point for the current work is the observation that t-norms are uninorms. As we mentioned above, while t-norms have unit at 1 , uninorms does instead unit lying anywhere in [0, 1]. Then a natural concern arises about for which uninorm logics Metcalfe and Montagna's strategy being able to work. Since MTL is the logic of left-continuous t-norms, this strategy of course works for t-norms, i.e., uninorms having identity 1 . We here show that it works for other uninorms, i.e., uninorms not being t-norms. More exactly, we show that Jenei and Montagna-style approach may work for logics based on uninorms with a weak form of weakening (called the t-weakening), i.e., for t-weakening uninorm (based) logics.(Yang (2009), p. 118.)

As the statements show, Yang considered t-weakening uninorm logics as logics not based on t-norms. As one example of such uninorm logics, he introduced the t -weakening uninorm logic $\mathrm{UL}_{\mathrm{wt}}$ and gave standard completeness proof for it in Yang (2009).

However, as Proposition 4.3 in Yang (2013) shows, uninorms satisfying t-weakening are t-norms. The standard completeness for t-norm logics introduced by Jenei and Montagna are well known (see Esteva et al. (2002), Jenei \& Montagna (2002)). Thus, this standard completeness proof for \mathbf{U}_{Wt} is not interesting since this logic is a t-norm logic, but not a uninorm logic. As a weakening-free logic, here we introduce $\mathbf{U L}_{\text {cfr }}$, the $\mathbf{U L}$ with compensation-free reinforcement $(\operatorname{cfr})((\Phi \& \Psi) \rightarrow(\Phi \wedge \Psi)) \vee$ $((\phi \vee \Psi) \rightarrow(\phi \& \psi))$, and show that this system is standard complete, i.e., complete with respect to (w.r.t.) the real unit interval $[0,1]$.

The paper is organized as follows. In Section 2, we present the axiomatization of $\mathbf{U L} \mathbf{c f r}$, which is obtained by adding (cfr) to $\mathbf{U L}$. In Section 3, we then define algebraic structures corresponding to the logic $\mathbf{U L}_{\text {cfr }}$, by a subvariety of the variety of commutative residuated lattices (i.e., the variety of $\mathrm{UL}_{\text {cfr }}$-algebras), and show that $\mathbf{U L}_{\text {cfr }}$ is complete w.r.t. linearly ordered $\mathbf{U L}_{\text {cfr }}$-algebras. This will ensure that $\mathbf{U L}_{\text {cfr }}$ is fuzzy in Cintula's sense in Cintula (2006). In Section 4, after defining compensation-freely reinforced uninorms, we note that t-weakening uninorms are t-norms. In Section 5, finally we provide standard completeness results for $\mathbf{U L}_{\text {cfr }}$, using the method introduced in Yang (2009; 2013). ${ }^{1)}$

For convenience, we shall adopt the notation and terminology similar to those in Cintula (2006), Esteva et al. (2002), Hájek

[^0](1998), Metcalfe \& Montagna (2007), Yang (2009; 2013), and assume familiarity with them (together with the results found therein).

2. Syntax

We base the compensation-freely reinforced fuzzy logic $\mathbf{U L}_{\text {cfr }}$ on a countable propositional language with formulas Fm built inductively as usual from a set of propositional variables $V A R$, binary connectives $\rightarrow, \&, \wedge, \vee$, and constants $\mathbf{T}, \mathbf{F}, \mathbf{f}, \mathbf{t}$, with defined connectives:

$$
\begin{aligned}
& \text { df1. } \sim \phi:=\phi \rightarrow \mathbf{f}, \text { and } \\
& \text { df2. } \phi \leftrightarrow \Psi:=(\phi \rightarrow \Psi) \wedge(\Psi \rightarrow \phi)
\end{aligned}
$$

We may define \mathbf{t} as $\mathbf{f} \rightarrow \mathbf{f}$. We moreover define $\phi_{t}{ }_{\mathbf{t}}$ as $\phi_{t} \&$ $\cdots \& \phi_{\mathrm{t}}, \mathrm{n}$ factors, where $\phi_{\mathrm{t}}:=\Phi \wedge \mathbf{t}$. For the remainder we shall follow the customary notation and terminology. We use the axiom systems to provide a consequence relation.

We start with the following axiomatization of $\mathbf{U} \mathbf{L}_{\text {cfr }}$ ($\mathbf{U L}$ plus (cfr)) as a compensation-freely reinforced (substructural) fuzzy logic.

Definition 2.1 $\mathbf{U L}_{\text {cfr }}$ consists of the following axiom schemes and rules:

A1. $\phi \rightarrow \Phi$ (self-implication, SI)
A2. $(\phi \wedge \Psi) \rightarrow \phi,(\phi \wedge \psi) \rightarrow \psi(\wedge$-elimination, \wedge-E $)$

A3. $((\phi \rightarrow \psi) \wedge(\phi \rightarrow X)) \rightarrow(\phi \rightarrow(\Psi \wedge \chi)) \quad(\wedge$-introduction, $\wedge-\mathrm{I})$
A4. $\phi \rightarrow(\phi \vee \Psi), \quad \psi \rightarrow(\phi \vee \Psi) \quad(\vee$-introduction, \vee-I)
A5. $((\phi \rightarrow \mathrm{x}) \wedge(\Psi \rightarrow \mathrm{x})) \rightarrow((\Phi \vee \Psi) \rightarrow \mathrm{x}) \quad(\vee$-elimination, \vee - E$)$
A6. $\phi \rightarrow \mathbf{T}$ (verum ex quolibet, VE)
A7. $\mathbf{F} \rightarrow \Phi \quad$ (ex falso quadlibet, EF)
A8. $(\Phi \& \psi) \rightarrow(\Psi \& \phi) \quad(\&-c o m m u t a t i v i t y, ~ \&-C)$
A9. $(\phi \& \mathbf{t}) \leftrightarrow \phi$ (push and pop, PP)
A10. $(\phi \rightarrow \psi) \rightarrow((\Psi \rightarrow \mathrm{X}) \rightarrow(\Phi \rightarrow \mathrm{X})) \quad$ (suffixing, SF)
A11. $(\Phi \rightarrow(\Psi \rightarrow X)) \leftrightarrow((\Phi \& \Psi) \rightarrow X) \quad$ (residuation, RE)
A12. $((\Phi \& \Psi) \rightarrow(\Phi \wedge \Psi)) \vee((\Phi \vee \Psi) \rightarrow(\phi \& \Psi))$ (compensation-free reinforcement, cfr)
A13. $(\phi \rightarrow \psi)_{\mathrm{t}} \vee(\Psi \rightarrow \phi)_{\mathrm{t}}\left(\mathrm{t}\right.$-prelinearity, $\left.\mathrm{PL}_{\mathrm{t}}\right)$.
$\phi \rightarrow \psi, \phi \vdash \psi$ (modus ponens, mp)
$\phi, \Psi \vdash \Phi \wedge \psi($ adjunction, adj)

Proposition 2.2 UL ${ }_{\text {cfr }}$ proves:
(1) $(\Phi \&(\Psi \& X)) \leftrightarrow((\Phi \& \Psi) \& x) \quad(\&$-associativity, AS).

In $\mathbf{U} \mathbf{L}_{\text {cfr }}, \mathbf{f}$ can be defined as $\sim \mathbf{t}$ and vice versa. A theory over $\mathbf{U} \mathbf{L}_{\text {cfr }}$ is a set T of formulas. A proof in a sequence of formulas whose each member is either an axiom of $\mathbf{U} \mathbf{L}_{\text {cfr }}$ or a member of T or follows from some preceding members of the sequence using the rules (mp) and (adj). $\mathrm{T} \vdash \phi$, more exactly $\mathrm{T} \vdash$ uLcfr ϕ, means that ϕ is provable in T w.r.t. $\mathrm{UL}_{\text {cfrr }}$, i.e., there is a $\mathbf{U L} \mathbf{c f i r}$ proof of ϕ in T. The local deduction theorem (LDT) for $\mathrm{UL}_{\text {cfr }}$ is as follows:

Proposition 2.3 Let T be a theory, and Φ, Ψ formulas. $T \cup$ $\{\Phi\} \vdash_{\mathrm{UL} \text { cfr }} \psi$ iff there is n such that $\mathrm{T} \vdash_{\mathrm{UL} \text { cfr }} \phi_{\mathrm{t}}^{\mathrm{n}} \rightarrow \psi$.

Proof: See Novak (1990).

A theory T is inconsistent if $\mathrm{T} \vdash \mathbf{F}$; otherwise it is consistent.
For convenience, " $\sim ", " \wedge "$, " $\vee "$, and $" \rightarrow$ " are used ambiguously as propositional connectives and as algebraic operators, but context should make their meaning clear.

3. Semantics

Suitable algebraic structures for $\mathbf{U} \mathbf{L}_{\text {cfr }}$ are obtained as a subvariety of the variety of commutative monoidal residuated lattices.

Definition 3.1 A pointed bounded commutative residuated compensation-freely reinforced lattice is a structure $\mathbf{A}=(\mathrm{A}, \mathrm{T}$, $\perp, \mathrm{t}, \mathrm{f}, \wedge, \vee, *, \rightarrow)$ such that:
(I) $(\mathrm{A}, \top, \perp, \wedge, \vee)$ is a bounded lattice with top element \top and bottom element \perp.
$(\Pi)\left(\mathrm{A},{ }^{*}, \mathrm{t}\right)$ is a commutative monoid.
(III) $y \leq x \rightarrow z$ iff $x * y \leq z$, for all $x, y, z \in A$ (residuation).
$($ IV $) t \leq((x * y) \rightarrow(x \wedge y)) \vee\left((x \vee y) \rightarrow\left(x^{*} y\right)\right)$, for all $x, y \in$ A (compensation-free reinforcement).

To define the above lattice we may take in place of (III) a family of equations as in Hájek (1998). Using \rightarrow and f we can define t as $\mathrm{f} \rightarrow \mathrm{f}$, and \sim as in (dfl). In the lattice, \sim is a weak negation in the sense that for all $\mathrm{x}, \mathrm{x} \leq \sim \sim \mathrm{x}$ holds in it. Then, $\mathrm{UL}_{\text {cfr-}}$-algebras the class of which characterizes $\mathbf{U} \mathbf{L}_{\text {cfr }}$ are defined as follows.

Definition 3.2 (UL $L_{\text {cfr }}$-algebra) A $U L_{\text {cfir }}$-algebra is a pointed bounded commutative residuated compensation-freely reinforced lattice satisfying the condition: for all x, y,

$$
\left(\mathrm{pl}_{\mathrm{t}}\right) \mathrm{t} \leq(\mathrm{x} \rightarrow \mathrm{y})_{\mathrm{t}} \vee(\mathrm{y} \rightarrow \mathrm{x})_{\mathrm{t}} .
$$

A $\mathrm{UL}_{\text {cfir-algebra }}$ is said to be linearly ordered if the ordering of its algebra is linear, i.e., $\mathrm{x} \leq \mathrm{y}$ or $\mathrm{y} \leq \mathrm{x}$ (equivalently, $\mathrm{x} \wedge \mathrm{y}$ $=x$ or $x \wedge y=y$ for each pair x, y. In linearly ordered algebras, we in particular call monoids satisfying (IV) compensation-freely reinforced monoids.

Definition 3.3 (Evaluation) Let A be an algebra. An A-evaluation is a function $\mathrm{v}:$ FOR $\rightarrow \&$ satisfying: $\mathrm{v}(\phi \rightarrow \Psi)=$ $\mathrm{v}(\phi) \rightarrow \mathrm{v}(\Psi), \mathrm{v}(\phi \wedge \Psi)=\mathrm{v}(\phi) \wedge \mathrm{v}(\Psi), \mathrm{v}(\phi \vee \Psi)=\mathrm{v}(\phi) \vee$ $\mathrm{v}(\Psi), \mathrm{v}(\Phi \& \Psi)=\mathrm{v}(\phi) * \mathrm{v}(\Psi), \mathrm{v}(\mathbf{F})=\perp, \mathrm{v}(\mathbf{f})=\mathrm{f}$, (and hence $\mathrm{v}(\sim \phi)=\sim \mathrm{v}(\phi), \mathrm{v}(\mathbf{T})=\mathrm{T}$, and $\mathrm{v}(\mathrm{t})=\mathrm{t})$.

Definition 3.4 Let A be a UL cfr-algebra, T a theory, Φ a formula, and K a class of $\mathrm{UL}_{\text {cfi-algebras. }}$
(i) (Tautology) Φ is a t-tautology in A, briefly an A-tautology
(or A-valid), if $\mathrm{v}(\Phi) \geq \mathrm{t}$ for each A-evaluation v .
(ii) (Model) An A-evaluation v is an A-model of T if $\mathrm{v}(\phi) \geq$ t for each $\phi \in \mathrm{T}$. $\operatorname{By} \operatorname{Mod}(T, A)$, we denote the class of A-models of T.
(iii) (Semantic consequence) Φ is a semantic consequence of T w.r.t. K , denoting by $\mathrm{T} \vDash_{\mathrm{K}} \Phi$, if $\operatorname{Mod}(\mathrm{T}, \mathcal{A})=\operatorname{Mod}(\mathrm{T} \cup$ $\{\Phi\}, A)$ for each $A \in K$.

Definition 3.5 ($\mathbf{U L}_{\mathrm{cfr}}$-algebra) Let A, T, and ϕ be as in Definition 3.4. \& is a $\boldsymbol{U} \boldsymbol{L}_{c f r}$-algebra iff whenever Φ is $U_{\text {cfrr }}$-provable in T (i.e. $\mathrm{T} \vdash_{\mathrm{ULcfr}} \phi$), it is a semantic consequence of T w.r.t. the set $\{A\}$, i.e. $\left.\mathrm{T} \models_{\{A\}} \phi\right)$, \& a $\mathrm{UL}_{\text {cfr-}}$-algebra. By $\operatorname{MOD}^{(l)}\left(\boldsymbol{U} \boldsymbol{L}_{c f_{r} r}\right)$, we denote the class of (linearly ordered) $\mathbf{U} \mathbf{L}_{\text {cfr }}$-algebras. Finally, we write $\mathrm{T} \vDash{ }^{(1)}{ }_{\mathbf{U L c f r}} \Phi$ in place of $\mathrm{T} \vDash{ }_{\text {MOD }}{ }^{(1)}{ }_{(\text {ULcfr })} \Phi$.

Note that since each condition for the $U L_{\text {cfr }}$-algebra has the form of an equation or can be defined in an equation, it can be ensured that the class of all $\mathrm{UL}_{\mathrm{cfr}}$-algebras is a variety.

Let \mathbf{A} be a $U_{\text {cfr- }}$-algebra. We first show that classes of provably equivalent formulas form a $U_{c f r}$-algebra. Let T be a fixed theory over $\mathbf{U L}_{\text {cfr }}$. For each formula ϕ, let $[\Phi]_{\mathrm{T}}$ be the set of all formulas Ψ such that $T \vdash_{u L c f r} \phi \leftrightarrow \psi$ (formulas T-provably equivalent to $\phi) . \mathrm{A}_{\mathrm{T}}$ is the set of all the classes $[\phi]_{\mathrm{T}}$. We define that $[\phi]_{\mathrm{T}} \rightarrow[\psi]_{\mathrm{T}}=[\phi \rightarrow \psi]_{\mathrm{T}},[\phi]_{\mathrm{T}} *[\psi]_{\mathrm{T}}=[\phi \&$ $\psi]_{\mathrm{T}},[\phi]_{\mathrm{T}} \wedge[\Psi]_{\mathrm{T}}=[\phi \wedge \psi]_{\mathrm{T}},[\phi]_{\mathrm{T}} \vee[\psi]_{\mathrm{T}}=[\phi \vee \psi]_{\mathrm{T}}, \perp=$ $[\mathbf{F}]_{\mathrm{T}}, \quad \top=[\mathbf{T}]_{\mathrm{T}}, \mathrm{t}=[\mathbf{t}]_{\mathrm{T}}$, and $\mathrm{f}=[\mathbf{f}]_{\mathrm{T}}$. By \boldsymbol{A}_{T}, we denote this
algebra.

Proposition 3.6 For T a theory over $\mathrm{L}, \mathbf{A}_{\mathrm{T}}$ is a $\mathbf{U L}_{\mathrm{cfr}}$-algebra.

Proof: Note that A1 to A7 ensure that \wedge and \vee satisfy (I) in Definition 3.1; that AS, A8, A9 ensure that \& satisfies (II); that A11, A12 and A13 ensure that (III), (IV), and (pl_{t}) hold. It is obvious that $[\Phi]_{\mathrm{T}} \leq[\Psi]_{\mathrm{T}}$ iff $\mathrm{T} \vdash_{\mathrm{UL} \text { cfr }} \phi \leftrightarrow(\Phi \wedge \Psi)$ iff $\mathrm{T} \vdash$ ULcfr $\phi \rightarrow \Psi$. Finally, recall that \mathbf{A}_{T} is a $\mathbf{U L}_{\text {cfr }}$-algebra iff $\mathrm{T} \vdash$ ulcfr Ψ implies $T \not \vDash_{\text {ulcfr }} \Psi$, and observe that for ϕ in T , since T $\vdash_{\mathrm{ULcfr}} \mathbf{t} \rightarrow \phi$, it follows that $[\mathbf{t}]_{\mathrm{T}} \leq[\phi]_{\mathrm{T}}$. Thus, it is a $\mathbf{U L}_{\text {cfr }}$-algebra.

We next note that the nomenclature of the prelinearity condition is explained by the subdirect representation theorem below.

Proposition 3.7 Each $\mathrm{UL}_{\text {cfr }}$-algebra is a subdirect product of linearly ordered $\mathrm{UL}_{\text {cfr }}$-algebras.

Proof: Its proof is analogous to that of Lemma 3.7 in Cintula (2006).

Theorem 3.8 (Strong completeness) Let T be a theory, and Φ a formula. $\mathrm{T} \vdash_{\mathrm{UL} \text { cfr }} \phi$ iff $\mathrm{T} \vDash{ }_{\mathrm{UL} \text { cfr }} \phi$ iff $\mathrm{T} \vDash^{1}{ }_{\mathrm{UL} \text { cfr }} \phi$.

Proof: (i) $\mathrm{T} \vdash_{\text {ulcfr }} \Phi$ iff $\mathrm{T} \vDash_{\text {ulcfr }} \Phi$. The left-to-right direction follows from definition. The right-to-left direction is as
follows: from Proposition 3.6, we obtain $\mathbf{A}_{T} \in \operatorname{MOD}(\mathrm{~L})$, and for \mathbf{A}_{T}-evaluation v defined as $\mathrm{v}(\Psi)=[\Psi]_{\mathrm{T}}$, it holds that $\mathrm{v} \in$ $\operatorname{Mod}\left(\mathrm{T}, \mathbf{A}_{\mathrm{T}}\right)$. Thus, since from $\mathrm{T} \vDash_{\text {ULcfr }} \Phi$ we obtain that $[\Phi]_{\mathrm{T}}=$ $\mathrm{v}(\phi) \geq \mathrm{t}, \mathrm{T} \vdash_{\mathrm{UL} \text { cfr }} \mathbf{t} \rightarrow \phi$. Then, since $\mathrm{T} \vdash_{\mathrm{UL} \text { cfr }} \mathrm{t}$, by $(\mathrm{mp}) \mathrm{T}$ $\vdash_{\mathrm{uLcfr}} \phi$, as required.
(ii) $\mathrm{T} \vDash_{\text {ULcfr }} \Phi$ iff $\mathrm{T} \vDash^{1}{ }_{\mathrm{ULcff}} \phi$. It follows from Proposition 3.7. \square
4. Compensation-freely reinforced uninorms and their residua

In this section, using 1,0 , and some e, and ∂ in the real unit interval $[0,1]$, we shall express \top, \perp, t , and f , respectively. We also define standard $\mathrm{UL}_{\mathrm{cfr}}$-algebras and compensation-freely reinforced uninorms.

Definition 4.1 A $U_{c f r}$-algebra is standard iff its lattice reduct is $[0,1]$.

In standard $\mathrm{UL}_{\text {cfr }}$-algebras, the monoid operator $*$ is a compensation-freely reinforced uninorm. We first introduce uninorms.

Definition 4.2 A uninorm is a function $O:[0,1]^{2} \rightarrow[0,1]$ such that for some $e \in[0,1]$ and for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in[0,1]$:
(a) $\mathrm{x} \bigcirc \mathrm{y}=\mathrm{y} \bigcirc \mathrm{x}$ (commutativity),
(b) $x \bigcirc(y \bigcirc z)=(x \bigcirc y) \bigcirc z$ (associativity),
(c) $\mathrm{x} \leq \mathrm{y}$ implies $\mathrm{x} \bigcirc \mathrm{z} \leq \mathrm{y} \bigcirc \mathrm{z}$ (monotonicity), and (d) $e \bigcirc \mathrm{x}=\mathrm{x}$ (identity).

Uninorms satisfying (1-identity) $e=1$ are t-norms. \bigcirc is residuated iff there is $\rightarrow:[0,1]^{2} \rightarrow[0,1]$ satisfying (residuation) on [0, 1]. A uninorm is called conjunctive if $0 \bigcirc 1$ $=0$, and disjunctive if $0 \bigcirc 1=1$. For some $\partial \in[0,1]$, a residuated uninorm has weak negation n defined as $n(x):=x \rightarrow$ ∂ because $x \bigcirc(x \rightarrow \partial) \leq \partial$ holds in it and so by residuation $\mathrm{x} \bigcirc(\mathrm{x} \rightarrow \partial) \leq \partial$ iff $\mathrm{x} \leq(\mathrm{x} \rightarrow \partial) \rightarrow \partial$.

The most important property of a uninorm is that left-continuity holds in it. Given a uninorm \bigcirc, residuated implication \rightarrow determined by \bigcirc is defined as $\mathrm{x} \rightarrow \mathrm{y}:=\sup \{\mathrm{z} \in[0,1]: \mathrm{x} \bigcirc$ $\mathrm{z} \leq \mathrm{y}\}$ for all $\mathrm{x}, \mathrm{y} \in[0,1]$. Then, we can show that for any uninorm \bigcirc, \bigcirc and its residuated implication \rightarrow form a residuated pair iff O is conjunctive and left-continuous in both arguments (see Proposition 5.4.2 in Gottwald (2001)).

A compensation-freely reinforced uninorm is defined as follows.

Definition 4.3 A compensation-freely reinforced uninorm is a residuated uninorm satisfying for all $\mathrm{x}, \mathrm{y} \in[0,1]$:

$$
(\mathrm{cfr}) \mathrm{x} \bigcirc \mathrm{y} \leq \min \{\mathrm{x}, \mathrm{y}\} \text { or } \max \{\mathrm{x}, \mathrm{y}\} \leq \mathrm{x} \bigcirc \mathrm{y} .
$$

Notice that (cfr) ensures that compensation-freely reinforced uninorms can be defined as residuated uninorms satisfying: for all $\mathrm{x}, \mathrm{y} \in[0,1],\left(\mathrm{cfr}^{\prime}\right) \mathrm{e} \leq \max \{(\mathrm{x} \bigcirc \mathrm{y}) \rightarrow \min (\mathrm{x}, \mathrm{y}), \max (\mathrm{x}$,
$y) \rightarrow(x \bigcirc y)\}$.

Example 4.4 (i) (Yang (2011)) Given a fixed-point weak negation n, i.e., a negation n satisfying: for all $x \in[0,1]$,
(a) $\mathrm{n}(\mathrm{t})=\mathrm{t}$,
(b) $n(n(x)) \geq x$, and
(c) $\mathrm{n}(0)=1$ and $\mathrm{n}(1)=0$,
we can construct a conjunctive left-continuous idempotent uninorm \bigcirc given by, for all $x, y \in[0,1]$:

$$
\begin{aligned}
\mathrm{x} \bigcirc \mathrm{y}= & \min (\mathrm{x}, \mathrm{y}) \text { if } \mathrm{y} \leq \mathrm{n}(\mathrm{x}) \\
& \max (\mathrm{x}, \mathrm{y}) \text { otherwise. }
\end{aligned}
$$

(ii) (Klement et al. (2000)) Given the standard negation $\mathrm{n}_{\mathrm{s}}=1$

- x, we can construct a conjunctive left-continuous idempotent uninorm O_{s} given by, for all $x, y \in[0,1]$:

$$
\begin{aligned}
\mathrm{x} O_{\mathrm{s}} \mathrm{y}= & \min (\mathrm{x}, \mathrm{y}) \text { if } \mathrm{x}+\mathrm{y} \leq 1 \\
& \max (\mathrm{x}, \mathrm{y}) \text { otherwise. }
\end{aligned}
$$

(iii) (Klement et al. (2000)) Consider a conjunctive left-continuous idempotent uninorm \bigcirc with a negation n. Then its residuated implication \rightarrow is given by

$$
\begin{aligned}
\mathrm{x} \rightarrow \mathrm{y}= & \max (\mathrm{n}(\mathrm{x}), \mathrm{y}) \text { if } \mathrm{x} \leq \mathrm{y}, \\
& \min (\mathrm{n}(\mathrm{x}), \mathrm{y}) \text { otherwise. }
\end{aligned}
$$

(iv) (De Baets \& Fodor (1999), Klement et al. (2000)) Consider the standard negation n_{s}. Then the residiated implication \rightarrow_{s} of the corresponding conjunctive left-continuous idempotent uninorm O_{s} is given by

$$
\begin{aligned}
\mathrm{x} \rightarrow_{\mathrm{s}} \mathrm{y}= & \max (1-\mathrm{x}, \mathrm{y}) \text { if } \mathrm{x} \leq \mathrm{y} \\
& \min (1-\mathrm{x}, \mathrm{y}) \text { otherwise. }
\end{aligned}
$$

The structure $\mathbf{A}_{s}=\left([0,1], 1,0,1 / 2,1 / 2, \min , \max , O_{s}, \rightarrow_{s}\right)$, where O_{s} and \rightarrow_{s} are the conjunctive left-continuous idempotent uninorm and its residuum, is known to us as the algebra for the involutive uninorm mingle logic IUML.

Fact 4.5 (Metcalfe \& Montagna (2007)) Let $\mathbf{A}_{\mathrm{s}}=([0,1], 1,0$, $1 / 2,1 / 2, \min , \max , \mathrm{O}_{\mathrm{s}}, \rightarrow_{\mathrm{s}}$), where:

$$
\begin{aligned}
\mathrm{x} \mathrm{O}_{\mathrm{s}} \mathrm{y}= & \min (\mathrm{x}, \mathrm{y}) \text { if } \mathrm{x}+\mathrm{y} \leq 1, \\
& \max (\mathrm{x}, \mathrm{y}) \text { otherwise. }
\end{aligned}
$$

ϕ is valid in all standard IUML-algebras iff ϕ is valid in the IUML-algebra \mathbf{A}_{s}.

Note that the conjunctive left-continuous idempotent uninorm $\mathrm{O}_{\text {s }}$ does not satisfy (1-identity), and so not forms t-norms.

Note 4.6 In Yang (2013), Yang verified that uninorms satisfying (t-weakening) are t-norms. We remind this: Given any t-weakening uninorm O, for all $\mathrm{x}<e$, we have $\min \{\mathrm{x} \circ 1$, $e\} \leq x$, and hence, $x \bigcirc 1 \leq x$. Since $x=x \bigcirc e \leq x$ 1 , for all $\mathrm{x}<e$, we have $\mathrm{x} \bigcirc 1=\mathrm{x}$. By the left-continuity of $O, e \bigcirc 1=\sup \{x \bigcirc 1: x<e\}=\sup \{x: x<e\}=$ e. But since $e \circ 1=1,1=e$, and the uninorm is a t-norm.

5. Standard completeness

We first show that finite or countable linearly ordered
$\mathbf{U} \mathbf{L}_{\text {cfr-}}$-algebras are embeddable into a standard algebra. (For convenience, we add less than relation symbol to such algebras.)

Proposition 5.1 For every finite or countable linearly ordered $\mathbf{U L}_{\text {cfr-}}$-algebra $\mathbf{A}=\left(\mathrm{A}, \leq_{\mathrm{A}}, \top, \perp, \mathrm{t}, \mathrm{f}, \wedge, \vee,^{*}, \rightarrow\right)$, there is a countable ordered set X, a binary operation O, and a map h from A into X such that the following conditions hold:
(I) X is densely ordered, and has a maximum Max, a minimum Min, and special elements e, ∂.
$(\Pi)(\mathrm{X}, \bigcirc, \leq, e)$ is a linearly ordered monotonic commutative compensation-freely reinforced monoid.
(III) \bigcirc is conjunctive and left-continuous w.r.t. the order topology on (X, \leq).
(IV) h is an embedding of the structure $\left(\mathrm{A}, \leq_{\mathrm{A}}, \top, \perp, \mathrm{t}, \mathrm{f}, \wedge\right.$, $\vee, *)$ into $(X, \leq, M a x, M i n, e, \partial, \min , \max , O)$, and for all $\mathrm{m}, \mathrm{n} \in \mathrm{A}, \mathrm{h}(\mathrm{m} \rightarrow \mathrm{n})$ is the residuum of $\mathrm{h}(\mathrm{m})$ and $\mathrm{h}(\mathrm{n})$ in $(\mathrm{X}, \leq, \operatorname{Max}, \operatorname{Min}, e, \partial, \max , \min , O)$.

Proof: For convenience, we assume A as a subset of $\mathbf{Q} \cap[0$, 1] with finite or countable elements, where 0 and 1 are least and greatest elements, each of which corresponds to \top, \perp, respectively. Let

$$
\begin{gathered}
\mathrm{X}=\{(\mathrm{m}, \mathrm{x}): \mathrm{m} \in \mathrm{~A} \backslash\{0(=\perp)\} \text { and } \mathrm{x} \in \mathbf{Q} \cap(0, \mathrm{~m}]\} \\
\cup\{(0,0)\} .
\end{gathered}
$$

For $(\mathrm{m}, \mathrm{x}),(\mathrm{n}, \mathrm{y}) \in \mathrm{X}$, we define:

$$
(\mathrm{m}, \mathrm{x}) \leq(\mathrm{n}, \mathrm{y}) \text { iff either } \mathrm{m}<_{\mathrm{A}} \mathrm{n} \text {, or } \mathrm{m}==_{\mathrm{A}} \mathrm{n} \text { and } \mathrm{x} \leq \mathrm{y}
$$

It is clear that \leq is a linear order with maximum $(1,1)$, minimum $(0,0)$, and special elements $e=(t, t), \partial=(f, f)$. Furthermore, \leq is dense: let $(\mathrm{m}, \mathrm{x})<(\mathrm{n}, \mathrm{y})$. Then either $\mathrm{m}<_{\mathrm{A}}$ n or $\mathrm{m}=\mathrm{A}_{\mathrm{A}} \mathrm{n}$ and $\mathrm{x}<\mathrm{y}$. If the first is the case, then $(\mathrm{m}, \mathrm{x})<$ $(\mathrm{n}, \mathrm{y} / 2)<(\mathrm{n}, \mathrm{y})$. Otherwise, $(\mathrm{m}, \mathrm{x})<(\mathrm{n}, \mathrm{x}+\mathrm{y} / 2)<(\mathrm{n}, \mathrm{y})$. This proves (I).

For convenience, we will henceforth drop the index A in $<_{A}$ and $=_{A}$, if we need not distinguish them. But context should make clear what we mean.

Define for $(m, x),(n, y) \in X:$

$$
\begin{aligned}
&(\mathrm{m}, \mathrm{x}) \bigcirc(\mathrm{n}, \mathrm{y})= \max \{(\mathrm{m}, \mathrm{x}),(\mathrm{n}, \mathrm{y})\} \\
& \text { if } \mathrm{m} * \mathrm{n}=\mathrm{m} \vee \mathrm{n}, \text { and } \\
&(\mathrm{m}, \mathrm{x})>e \text { or }(\mathrm{n}, \mathrm{y})>e ; \\
& \min \{(\mathrm{m}, \mathrm{x}),(\mathrm{n}, \mathrm{y})\} \quad \\
& \text { if } \mathrm{m} * \mathrm{n}=\mathrm{m} \wedge \mathrm{z}, \text { and } \\
&(\mathrm{m}, \mathrm{x}) \leq e \text { or }(\mathrm{n}, \mathrm{y}) \leq e ; \\
&(\mathrm{m} * \mathrm{n}, \mathrm{~m} * \mathrm{n}) \quad \text { otherwise. }
\end{aligned}
$$

We verify that O satisfies (II) (noting that (cfr) of $*$ ensures that for all $\mathrm{m}, \mathrm{n} \in \mathrm{A}, \mathrm{m} * \mathrm{n} \leq \mathrm{m} \wedge \mathrm{n}$ or $\mathrm{m} \vee \mathrm{n} \leq \mathrm{m} * \mathrm{n})$.
(1) Commutativity. It is obvious that O is commutative.
(2) Identity. We prove that (t, t) is the unit element, i.e., ($\mathrm{t}, \mathrm{t}) \bigcirc$ $(\mathrm{m}, \mathrm{x})=(\mathrm{m}, \mathrm{x})$. (i) Let $(\mathrm{t}, \mathrm{t})<(\mathrm{m}, \mathrm{x})$. Since $\mathrm{t} * \mathrm{~m}=\mathrm{m}=$ $\mathrm{t} \vee \mathrm{m},(\mathrm{t}, \mathrm{t}) \bigcirc(\mathrm{m}, \mathrm{x})=\max \{(\mathrm{t}, \mathrm{t}),(\mathrm{m}, \mathrm{x})\}=(\mathrm{m}, \mathrm{x})$. (ii) Let $(\mathrm{m}, \mathrm{x}) \leq(\mathrm{t}, \mathrm{t})$. Since $\mathrm{t} * \mathrm{~m}=\mathrm{m}=\mathrm{t} \wedge \mathrm{m},(\mathrm{t}, \mathrm{t}) \bigcirc$ $(\mathrm{m}, \mathrm{x})=\min \{(\mathrm{t}, \mathrm{t}),(\mathrm{m}, \mathrm{x})\}=(\mathrm{m}, \mathrm{x})$.
(3) Monotonicity. Since \bigcirc is commutative, it suffices to prove that if $(1, \mathrm{x}) \leq(\mathrm{m}, \mathrm{y})$, then for all $(\mathrm{n}, \mathrm{z}) \in \mathrm{X},(\mathrm{l}, \mathrm{x}) \bigcirc(\mathrm{n}$, $z) \leq(m, y) \bigcirc(n, z)$. We distinguish several cases:

- Case (i). $1^{*} \mathrm{n}=1 \vee \mathrm{n}$ and $\mathrm{m}^{*} \mathrm{n}=\mathrm{m} \vee \mathrm{n}$:

Subcase (i-a). (l, x) $>e$ or $(n, z)>e$.
$(\mathrm{a}-1)(\mathrm{m}, \mathrm{y})>e$ or $(\mathrm{n}, \mathrm{z})>e$. If $e<(\mathrm{l}, \mathrm{x}),(\mathrm{n}, \mathrm{z}),(\mathrm{m}$, $\mathrm{y})$, then $(\mathrm{l}, \mathrm{x}) \bigcirc(\mathrm{n}, \mathrm{z})=\max \{(\mathrm{l}, \mathrm{x}),(\mathrm{n}, \mathrm{z})\} \leq \max \{(\mathrm{m}, \mathrm{y}),(\mathrm{n}$, $\mathrm{z})\}=(\mathrm{m}, \mathrm{y}) \bigcirc(\mathrm{n}, \mathrm{z})$. If $(\mathrm{n}, \mathrm{z}) \leq \mathrm{e}<(\mathrm{l}, \mathrm{x}) \leq(\mathrm{m}, \mathrm{y}),(\mathrm{l}$, $\mathrm{x}) \bigcirc(\mathrm{n}, \mathrm{z})=\max \{(\mathrm{l}, \mathrm{x}),(\mathrm{n}, \mathrm{z})\}=(\mathrm{l}, \mathrm{x}) \leq(\mathrm{m}, \mathrm{y})=\max \{(\mathrm{m}$, $\mathrm{y}),(\mathrm{n}, \mathrm{z})\}=(\mathrm{m}, \mathrm{y}) \bigcirc(\mathrm{n}, \mathrm{z})$. If $(\mathrm{l}, \mathrm{x}) \leq e<(\mathrm{n}, \mathrm{z}),(\mathrm{l}, \mathrm{x})$ $O(\mathrm{n}, \mathrm{z})=\max \{(\mathrm{l}, \mathrm{x}),(\mathrm{n}, \mathrm{z})\}=(\mathrm{n}, \mathrm{z}) \leq \max \{(\mathrm{m}, \mathrm{y}),(\mathrm{n}, \mathrm{z})\}=$ $(\mathrm{m}, \mathrm{y}) \bigcirc(\mathrm{n}, \mathrm{z})$.
$(\mathrm{a}-2)(\mathrm{m}, \mathrm{y}),(\mathrm{n}, \mathrm{z}) \leq e$. This is not the case by the supposition.
Subcase (i-b). (l, x), (n, z) $\leq e$.
$(\mathrm{b}-1)(\mathrm{m}, \mathrm{y})>e . \operatorname{Then}(\mathrm{l}, \mathrm{x}) \bigcirc(\mathrm{n}, \mathrm{z})=\min \{(\mathrm{l}, \mathrm{x}),(\mathrm{n}, \mathrm{z})\}<$ $(\mathrm{m}, \mathrm{y})=\max \{(\mathrm{m}, \mathrm{y}),(\mathrm{n}, \mathrm{z})\}=(\mathrm{m}, \mathrm{y}) \bigcirc(\mathrm{n}, \mathrm{z})$.
$(\mathrm{b}-2)(\mathrm{m}, \mathrm{y}) \leq e$. Then $\mathrm{l}=\mathrm{m}=\mathrm{n}$, and $\operatorname{so}(\mathrm{l}, \mathrm{x}) \bigcirc(\mathrm{n}, \mathrm{z})=$ $\min \{(\mathrm{l}, \mathrm{x}),(\mathrm{n}, \mathrm{z})\} \leq \min \{(\mathrm{m}, \mathrm{y}),(\mathrm{n}, \mathrm{z})\}=(\mathrm{m}, \mathrm{y}) \bigcirc(\mathrm{n}, \mathrm{z})$.

- Case (ii). $1^{*} \mathrm{n}=1 \wedge \mathrm{n}$ and $\mathrm{m} * \mathrm{n}=\mathrm{m} \wedge \mathrm{n}$. Its proof is analogous to that of Case (i).
- Case (iii). $l^{*} \mathrm{n}=1 \vee \mathrm{n}$ and $\mathrm{m} * \mathrm{n} \neq \mathrm{m} \vee \mathrm{n}$. We need to consider the subcases (a) $m * n=m \wedge n$ and (b) $m *$
$\mathrm{n} \neq \mathrm{m} \wedge \mathrm{n}$.
Subcase (iii-a). $m^{*} n=m \wedge n$. Since $m{ }^{*} n \neq m \vee n$ and so $m \neq n, l=n<m, t$. Then $(1, x) \bigcirc(n, z)=\min \{(1, x)$, $(\mathrm{n}, \mathrm{z})\} \leq \min \{(\mathrm{m}, \mathrm{y}),(\mathrm{n}, \mathrm{z})\}=(\mathrm{m}, \mathrm{y}) \bigcirc(\mathrm{n}, \mathrm{z})$.
Subcase (iii-b). $m^{*} n \neq m \wedge n$:
(b-1) $\mathrm{m}^{*} \mathrm{n}>\mathrm{t}$. Then, since $\mathrm{l}^{*} \mathrm{n} \leq \mathrm{m} * \mathrm{n}$ and (m,y) $O(\mathrm{n}$, $\mathrm{z})=(\mathrm{m} * \mathrm{n}, \mathrm{m} * \mathrm{n}),(\mathrm{l}, \mathrm{x}) \bigcirc(\mathrm{n}, \mathrm{z}) \leq(\mathrm{m}, \mathrm{y}) \bigcirc(\mathrm{n}, \mathrm{z})$.
$(\mathrm{b}-2) \mathrm{m}^{*} \mathrm{n} \leq \mathrm{t}$. This is not the case because it implies $1=\mathrm{n}$ $=1 * \mathrm{n}<\mathrm{m} * \mathrm{n} \leq \mathrm{t}$, but $\mathrm{m} * \mathrm{n} \leq \mathrm{m} \wedge \mathrm{n}$ or $\mathrm{m} \vee \mathrm{n} \leq \mathrm{m}$ * n and so $\mathrm{m} * \mathrm{n}<\mathrm{m} \wedge \mathrm{n}=\mathrm{n}$.
- Case (iv). $1 * n \neq 1 \vee \mathrm{n}$ and $\mathrm{m}^{*} \mathrm{n}=\mathrm{m} \vee \mathrm{n}$. Its proof is analogous to that of Case (iii).
- Case (v). $1^{*} \mathrm{n} \neq \mathrm{l} \vee \mathrm{n}, \mathrm{l} \wedge \mathrm{n}$, and $\mathrm{m}^{*} \mathrm{n} \neq \mathrm{m} \vee \mathrm{n}$, $\mathrm{m} \wedge \mathrm{n}$.

Subcase (v-a). $1 * \mathrm{n}, \mathrm{m} * \mathrm{n}>\mathrm{t} .(\mathrm{l}, \mathrm{x}) \bigcirc(\mathrm{n}, \mathrm{z})=(\mathrm{l} * \mathrm{n}, \mathrm{l} *$ $\mathrm{n}) \leq\left(\mathrm{m}^{*} \mathrm{n}, \mathrm{m}^{*} \mathrm{n}\right)=(\mathrm{m}, \mathrm{y}) \bigcirc(\mathrm{n}, \mathrm{z})$.

Subcase (v-b). $\mathrm{l}^{*} \mathrm{n} \leq \mathrm{t}<\mathrm{m}^{*} \mathrm{n}$. If $\mathrm{n} \leq \mathrm{t}$, then $\mathrm{m}^{*} \mathrm{n} \leq$ $\mathrm{m} \vee \mathrm{n}$, and otherwise, $1 \wedge \mathrm{n} \leq 1 * \mathrm{n}$. Thus, this is not the case.
Subcase (v-c). $1^{*} \mathrm{n}>\mathrm{t} \geq \mathrm{m} * \mathrm{n}$. By the supposition, this is not the case.
Subcase (v-d). Otherwise, i.e., $\mathrm{l}^{*} \mathrm{n}, \mathrm{m} * \mathrm{n} \leq \mathrm{t} .(\mathrm{l}, \mathrm{x}) \bigcirc(\mathrm{n}, \mathrm{z})$ $=(1 * n, 1 * n) \leq\left(m * n, m^{*} n\right)=(m, y) O(n, z)$.
(4) Compensation-free reinforcement. (i) Let $m * n \leq m \wedge n$. If
$\mathrm{m}^{*} \mathrm{n}=\mathrm{m} \wedge \mathrm{n} \leq \mathrm{t}$, then $(\mathrm{m}, \mathrm{x}) \bigcirc(\mathrm{n}, \mathrm{y})=\min \{(\mathrm{m}, \mathrm{x})$, $(\mathrm{n}, \mathrm{y})\}$. If $\mathrm{m} * \mathrm{n}=\mathrm{m} \wedge \mathrm{n}>\mathrm{t}$, then, $(\mathrm{m}, \mathrm{x}) \bigcirc(\mathrm{n}, \mathrm{y})=$ $\max \{(\mathrm{m}, \mathrm{x}),(\mathrm{n}, \mathrm{y})\}$. Otherwise, i.e., if $\mathrm{m} * \mathrm{n}<\mathrm{m} \wedge \mathrm{n}$, then $(\mathrm{m}, \mathrm{x}) \bigcirc(\mathrm{n}, \mathrm{y})<\min \{(\mathrm{m}, \mathrm{x}),(\mathrm{n}, \mathrm{y})\}$. (ii) Let $\mathrm{m} \vee$ $\mathrm{n} \leq \mathrm{m} * \mathrm{n}$. Its proof is analogous to that of (i).
(5) Associativity. We show that for all $(1, x),(m, y),(n, z) \in X$,

$$
(\mathrm{l}, \mathrm{x}) \bigcirc((\mathrm{m}, \mathrm{y}) \bigcirc(\mathrm{n}, \mathrm{z}))=((\mathrm{l}, \mathrm{x}) \bigcirc(\mathrm{m}, \mathrm{y})) \bigcirc(\mathrm{n}, \mathrm{z})(\mathrm{AS})
$$

Without further mention, we will use the fact that $*$ is associative and compensation-freely reinforced. We distinguish several cases:

- Case (i). $1^{*}\left(\mathrm{~m}^{*} \mathrm{n}\right)=\vee(\mathrm{l}, \mathrm{m}, \mathrm{n})$. If either $\mathrm{t}<1$ and t $<\mathrm{l}^{*}(\mathrm{~m} * \mathrm{n})$, or $\mathrm{t}<\mathrm{m}$ and $\mathrm{t}<\mathrm{l}^{*}\left(\mathrm{~m}^{*} \mathrm{n}\right)$, or $\mathrm{t}<\mathrm{n}$ and $\mathrm{t}<\mathrm{l}^{*}\left(\mathrm{~m}^{*} \mathrm{n}\right)$, then both sides of (AS) are equal to $\max \{(1$, $\mathrm{x}),(\mathrm{m}, \mathrm{y}),(\mathrm{n}, \mathrm{z})\}$. Otherwise, both sides of (AS) are equal to $\min \{(1, x),(m, y),(n, z)\}$.
- Case (ii). $1^{*}\left(\mathrm{~m}^{*} \mathrm{n}\right)=\wedge(\mathrm{l}, \mathrm{m}, \mathrm{n})$. If $\mathrm{t}<1=\mathrm{m}=\mathrm{n}$, both sides of (AS) are equal to $\max \{(1, \mathrm{x}),(\mathrm{m}, \mathrm{y}),(\mathrm{n}, \mathrm{z})\}$. Otherwise, both sides of (AS) are equal to $\min \{(\mathrm{l}, \mathrm{x}),(\mathrm{m}, \mathrm{y}),(\mathrm{n}, \mathrm{z})\}$.
- Case (iii). $1^{*}\left(\mathrm{~m}^{*} \mathrm{n}\right) \neq \vee(1, \mathrm{~m}, \mathrm{n}), \wedge(1, \mathrm{~m}, \mathrm{n})$, and 1 * $(\mathrm{m} * \mathrm{n}) \in\{1, \mathrm{~m}, \mathrm{n}\}$. This is not the case because $\vee(1, m, n)$ $\leq l^{*}\left(\mathrm{~m}^{*} \mathrm{n}\right)$ or $l^{*}\left(\mathrm{~m}^{*} \mathrm{n}\right) \leq \wedge(\mathrm{l}, \mathrm{m}, \mathrm{n})$ by (cfr).
- Case (iv). $1^{*}\left(\mathrm{~m}^{*} \mathrm{n}\right) \notin\{1, \mathrm{~m}, \mathrm{n}\}$ and either $\mathrm{l}^{*}(\mathrm{~m} *$ $\mathrm{n})=1 \vee\left(\mathrm{~m}^{*} \mathrm{n}\right)=\mathrm{m} * \mathrm{n}$ or $\mathrm{l}^{*}\left(\mathrm{~m}^{*} \mathrm{n}\right)=1 \wedge\left(\mathrm{~m}^{*} \mathrm{n}\right)=$ $\mathrm{m} * \mathrm{n}$. Then, since (cfr) ensures that either $\mathrm{t} \leq 1$, $\mathrm{m} \vee \mathrm{n}<\mathrm{m}$ * n or $\mathrm{t} \geq 1, \mathrm{~m} \wedge \mathrm{n}>\mathrm{m} * \mathrm{n}$, both sides of (AS) are equal to $\left(\mathrm{m}^{*} \mathrm{n}, \mathrm{m} * \mathrm{n}\right)$.
- Case (v). $1^{*}\left(\mathrm{~m}^{*} \mathrm{n}\right) \notin\{1, \mathrm{~m}, \mathrm{n}\}$ and $\mathrm{l}^{*}(\mathrm{~m} * \mathrm{n}) \neq 1$ $\vee\left(m^{*} \mathrm{n}\right), 1 \wedge\left(m^{*} \mathrm{n}\right)$. Then, we need to consider the cases 1 * $(\mathrm{m} * \mathrm{n})>\mathrm{t}$ and $\mathrm{l}^{*}(\mathrm{~m} * \mathrm{n}) \leq \mathrm{t}$. Both sides of (AS) are equal to $\left(l^{*}\left(m^{*} \mathrm{n}\right), 1 *\left(\mathrm{~m}^{*} \mathrm{n}\right)\right)$.

We then prove (III). Since $0 * 1=0$, it is immediate that O is conjunctive, i.e., $(0,0) \bigcirc(1,1)=(0,0)$.

For left-continuity of \bigcirc, we prove that if $\left\langle\left(m_{i}, x_{i}\right): i \in \mathbf{N}\right\rangle$ is any increasing sequence (w.r.t. \leq) of elements of X such that $\sup \left\{\left(m_{i}, x_{i}\right): i \in \mathbf{N}\right\}=(m, x)$, then for all $(n, y) \in X, \sup \left\{\left(m_{i}\right.\right.$, $\left.\left.\mathrm{x}_{\mathrm{i}}\right) \bigcirc(\mathrm{n}, \mathrm{y}): \mathrm{i} \in \mathbf{N}\right\}=(\mathrm{m}, \mathrm{x}) \bigcirc(\mathrm{n}, \mathrm{y})$. Note that for almost all $\mathrm{i}, \mathrm{m}_{\mathrm{i}}=\mathrm{m}$ (otherwise $(\mathrm{m}, \mathrm{x} / 2)<(\mathrm{m}, \mathrm{x})$ would be an upper bound of the sequence $\left\langle\left(\mathrm{m}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right)\right.$: $\left.\mathrm{i} \in \mathbf{N}>\right)$. By deleting a finite number of elements of the sequence $<\left(\mathrm{m}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right)$: $\mathrm{i} \in \mathbf{N}>$, we can suppose that for all $\mathrm{i}, \mathrm{m}_{\mathrm{i}}=\mathrm{m}$ and that $\mathrm{x}=\sup \left\{\mathrm{x}_{\mathrm{i}}: \mathrm{i} \in \mathbf{N}\right\}$. Then we need to consider the following cases:
Case (i). $\mathrm{m}^{*} \mathrm{n}=\mathrm{m} \vee \mathrm{n}$. In case $\mathrm{m}>\mathrm{t}$ or $\mathrm{n}>\mathrm{t}$, (m, x) $\bigcirc(\mathrm{n}, \mathrm{y})=\max \{(\mathrm{m}, \mathrm{x}),(\mathrm{n}, \mathrm{y})\},\left(\mathrm{m}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right) \bigcirc(\mathrm{n}, \mathrm{y})=\max \left\{\left(\mathrm{m}_{\mathrm{i}}\right.\right.$, $\left.\left.\mathrm{x}_{\mathrm{i}}\right),(\mathrm{n}, \mathrm{y})\right\}$, and left-continuity follows from left-continuity of max operation. Otherwise, i.e., if $m=n \leq t,(m, x) \bigcirc(n, y)=$ $\min \{(\mathrm{m}, \mathrm{x}),(\mathrm{n}, \mathrm{y})\}$ and for all $\mathrm{i},\left(\mathrm{m}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right) \bigcirc(\mathrm{n}, \mathrm{y})=\left(\min \left\{\left(\mathrm{m}_{\mathrm{i}}\right.\right.\right.$,
$\mathrm{x}),(\mathrm{n}, \mathrm{y})\})$, and left-continuity follows from left-continuity of min operation.

Case (ii). $\mathrm{m}^{*} \mathrm{n}=\mathrm{m} \wedge \mathrm{n}$. Its proof is analogous to that of Case (i).

Case (iii). $m * n \neq m \vee n, m \wedge n$. Then, (m, x) $\bigcirc(n, y)$ $=\left(m^{*} n, m^{*} n\right)$ and for all $\mathrm{i},\left(\mathrm{m}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right) \bigcirc(\mathrm{n}, \mathrm{y})=\left(\mathrm{m}_{\mathrm{i}} * \mathrm{n}, \mathrm{m}_{\mathrm{i}}\right.$ * n$)=\left(\mathrm{m}^{*} \mathrm{n}, \mathrm{m}^{*} \mathrm{n}\right)$. Thus $(\mathrm{m}, \mathrm{x}) \bigcirc(\mathrm{n}, \mathrm{y})=\left(\mathrm{m}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right) \bigcirc(\mathrm{n}, \mathrm{y})$.

This completes the proof of (III).
We finally prove (IV). First define for every $m \in A$,

$$
\mathrm{h}(\mathrm{~m})=(\mathrm{m}, \mathrm{~m})
$$

It is clear that h is increasing and so one-to-one. $h(1), h(0), h(t)$, and $\mathrm{h}(\mathrm{f})$ are top, bottom, and special elements of (X, \leq); and $h(t)$ is the unit element of O. We then show that $h(m) \bigcirc h(n)$ $=\mathrm{h}(\mathrm{m} * \mathrm{n})$:

Case (i). $\mathrm{t}<\mathrm{m}, \mathrm{n} . \mathrm{h}(\mathrm{m}) \bigcirc \mathrm{h}(\mathrm{n})=(\mathrm{m}, \mathrm{m}) \bigcirc(\mathrm{n}, \mathrm{n})=(\mathrm{m}$ * $\left.\mathrm{n}, \mathrm{m}{ }^{*} \mathrm{n}\right)=\mathrm{h}(\mathrm{m} * \mathrm{n})$.

Case (ii). $\mathrm{m} \leq \mathrm{t}<\mathrm{n}$.
Subcase (ii-a). m * $\mathrm{n}=\mathrm{m} \vee \mathrm{n} . \mathrm{h}(\mathrm{m}) \bigcirc \mathrm{h}(\mathrm{n})=(\mathrm{m}, \mathrm{m}) \bigcirc$ $(\mathrm{n}, \mathrm{n})=\max \{(\mathrm{m}, \mathrm{m}),(\mathrm{n}, \mathrm{n})\}=(\mathrm{n}, \mathrm{n})=\mathrm{h}(\mathrm{n})=\mathrm{h}(\mathrm{m} * \mathrm{n})$.

Subcase (ii-b). $m * n=m \wedge n . h(m) \bigcirc h(n)=(m, m) \bigcirc$ $(\mathrm{n}, \mathrm{n})=\min \{(\mathrm{m}, \mathrm{m}),(\mathrm{n}, \mathrm{n})\}=(\mathrm{m}, \mathrm{m})=\mathrm{h}(\mathrm{m})=\mathrm{h}(\mathrm{m} * \mathrm{n})$.

Case (iii). $\mathrm{n} \leq \mathrm{t}<\mathrm{m}$. Its proof is analogous to that of Case (ii).
Case (iv). $\mathrm{t} \geq \mathrm{m}, \mathrm{n}$. Its proof is analogous to that of Case (i). Thus h is an embedding of partially ordered monoids. It remains to prove that for every $1, \mathrm{~m}, \mathrm{n} \in \mathrm{A}, \mathrm{h}(\mathrm{l} \rightarrow \mathrm{m})$ is the
residuum of $h(1)$ and $h(m)$ w.r.t. \bigcirc, i.e., (i) $h(l) \bigcirc h(1 \rightarrow m) \leq$ $h(m)$, and (ii) if $h(l) \bigcirc(n, z) \leq h(m)$, then $(n, z) \leq h(l \rightarrow m)$.
(i). Consider the case $\mathrm{t}<\mathrm{l} \leq \mathrm{m} . \mathrm{h}(\mathrm{l}) \bigcirc \mathrm{h}(\mathrm{l} \rightarrow \mathrm{m})=(\mathrm{l}, 1)$ $\bigcirc(1 \rightarrow m, 1 \rightarrow m)=\left(1 *(1 \rightarrow m), l^{*}(1 \rightarrow m)\right) \leq(m, m)$ $=\mathrm{h}(\mathrm{m})$. Proof of the other cases is analogous.
(ii). By contraposition, we prove this. Suppose that $h(l \rightarrow m)$ $<(\mathrm{n}, \mathrm{z})$, i.e., $(\mathrm{l} \rightarrow \mathrm{m}, \mathrm{l} \rightarrow \mathrm{m})<(\mathrm{n}, \mathrm{z})$. Since $1 \rightarrow \mathrm{~m}$ is the residuum of 1 and m in $A, m<1 * \mathrm{n}$. Thus $(\mathrm{m}, \mathrm{m})<(\mathrm{l}, \mathrm{l})$ $O(n, z)$. This completes the proof.

Proposition 5.2 Every countable linearly ordered $\mathbf{U L}_{\text {cfr }}$-algebra can be embedded into a standard algebra.

Proof: In an analogy to the proof of Theorem 3.2 in Jenei \& Montagna (2002), we prove this. Let X, A, etc. be as in Proposition 5.1. Since (X, \leq) is a countable, dense, linearly-ordered set with maximum and minimum, it is order isomorphic to $(\mathbf{Q} \cap[0,1], \leq)$. Let g be such an isomorphism. If (I), (I), (III), and (IV) hold, letting for $a, \beta \in[0,1]$, $\alpha \bigcirc$ ' $\beta=g\left(g^{-1}(\alpha) \bigcirc g^{-1}(\beta)\right)$, and, for all $m \in A, h^{\prime}(m)=g(h(m))$, we obtain that $\mathbf{Q} \cap[0,1], \leq, 1,0, e, \partial, \circ^{\prime}, \mathrm{h}^{\prime}$ satisfy the conditions (I) to (IV) of Proposition 5.1 whenever X, \leq, Max, Min, e, ∂, O, and h do. Thus we can without loss of generality assume that $\mathrm{X}=\mathbf{Q} \cap[0,1]$ and $\leq=\leq$.

Now we define for $a, \beta \in[0,1]$,

$$
a ○^{\prime \prime} \beta=\sup _{x \in x: x \leq a} \sup _{y \in x: y \leq \beta} x \bigcirc y
$$

Commutativity of \bigcirc " follows from that of O. Its monotonicity, identity, and compensation-free reinforcement are easy consequences of the definition. Furthermore, it follows from the definition that $O^{\prime \prime}$ is conjunctive, i.e., $0 \quad \bigcirc^{\prime \prime} 1=0$.
We prove left-continuity. Suppose that $\left\langle a_{\mathrm{n}}: \mathrm{n} \in \mathbf{N}\right\rangle,\left\langle\beta_{\mathrm{n}}\right.$: n $\in \mathbf{N}>$ are increasing sequences of reals in $[0,1]$ such that sup $\left\{a_{\mathrm{n}}: \mathrm{n} \in \mathbf{N}\right\}=a$ and $\sup \left\{\beta_{\mathrm{n}}: \mathrm{n} \in \mathbf{N}\right\}=\beta$. By the monotonicity of $O^{\prime \prime}, \sup \left\{a_{n} ○^{\prime \prime} \beta_{n}\right\}=a ○^{\prime \prime} \beta$. Since the restriction of $O^{\prime \prime}$ to $\mathbf{Q} \cap[0,1]$ is left-continuous, we obtain

$$
\begin{aligned}
a O^{\prime \prime} \beta & =\sup \left\{q^{\prime \prime \prime} r: q, r \in \mathbf{Q} \cap[0,1], q \leq a, r \leq \beta\right\} \\
& =\sup \left\{q O^{\prime \prime} r: q, r \in \mathbf{Q} \cap[0,1], q<a, r<\beta\right\} .
\end{aligned}
$$

For each $\mathrm{q}<\mathrm{a}, \mathrm{r}<\beta$, there is n such that $\mathrm{q}<\mathrm{a}_{\mathrm{n}}$ and $\mathrm{r}<$ β_{n}. Thus,

$$
\begin{gathered}
\sup \left\{a_{n} ○^{\prime \prime} \beta_{n}: n \in \mathbf{N}\right\} \geq \sup \left\{q O^{\prime \prime} r: q, r \in \mathbf{Q} \cap[0,1],\right. \\
q<a, r<\beta\}=a O^{\prime \prime} \beta .
\end{gathered}
$$

Hence, $O^{\prime \prime}$ is a left-continuous compensation-freely reinforced uninorm on $[0,1]$.
It is an easy consequence of the definition that $O^{\prime \prime}$ extends O . By (I) to (IV), h is an embedding of $\left(\mathrm{A}, \leq_{\mathrm{A}}, \mathrm{T}, \perp, \mathrm{t}, \mathrm{f}\right.$, $\wedge, \vee, *)$ into ($\left.[0,1], \leq, 1,0, e, \partial, \min , \max , O^{\prime \prime}\right)$. Moreover, O " has a residuum, calling it \rightarrow.

We finally prove that for $\mathrm{x}, \mathrm{y} \in \mathrm{A}, \mathrm{h}(\mathrm{x} \rightarrow \mathrm{y})=\mathrm{h}(\mathrm{x}) \rightharpoonup \mathrm{h}(\mathrm{y})$.

By (IV), $\mathrm{h}(\mathrm{x} \rightarrow \mathrm{y}$) is the residuum of $\mathrm{h}(\mathrm{x})$ and $\mathrm{h}(\mathrm{y})$ in ($\mathbf{Q} \cap[0$, $1], \leq, 1,0, e, \partial, \min , \max , O)$. Thus

$$
h(x) ○^{\prime \prime} h(x \rightarrow y)=h(x) \bigcirc h(x \rightarrow y) \leq h(y)
$$

Suppose toward contradiction that there is $\mathrm{a}>\mathrm{h}(\mathrm{x} \rightarrow \mathrm{y})$ such that $a O^{\prime \prime} h(x) \leq h(y)$. Since $\mathbf{Q} \cap[0,1]$ is dense in $[0,1]$, there is $\mathrm{q} \in \mathbf{Q} \cap[0,1]$ such that $\mathrm{h}(\mathrm{x} \rightarrow \mathrm{y})<\mathrm{q} \leq \mathrm{a}$. Hence $\mathrm{q} \circ{ }^{\prime \prime} \mathrm{h}(\mathrm{x})=\mathrm{q} \circ \mathrm{h}(\mathrm{x}) \leq \mathrm{h}(\mathrm{y})$, contradicting (IV).

Theorem 5.3 (Strong standard completeness) For $\mathbf{U} \mathbf{L}_{\text {cfir }}$, the following are equivalent:
(1) $\mathrm{T} \vdash \vdash_{\text {Ulcfr }} \phi$.
(2) For every standard $\mathbf{U} \mathbf{L}_{\mathrm{cfr}}$-algebra and evaluation v , if $\mathrm{v}(\Psi)$ $\geq e$ for all $\psi \in \mathrm{T}$, then $\mathrm{v}(\phi) \geq e$.

Proof: (1) to (2) follows from definition. We prove (2) to (1). Let ϕ be a formula such that $\mathrm{T} \vdash_{\text {ULcfr }} \phi$, A a linearly ordered UL cfrr-algebra, and v an evaluation in \mathbf{A} such that $\mathrm{v}(\Psi) \geq \mathrm{t}$ for all $\psi \in \mathrm{T}$ and $\mathrm{v}(\phi)<\mathrm{t}$. Let h^{\prime} be the embedding of \mathbf{A} into the standard $\mathbf{U} \mathbf{L}_{\text {cfr }}$-algebra as in proof of Proposition 5.2. Then h^{\prime} O v is an evaluation into the standard $\mathbf{U} \mathbf{L}_{\mathrm{cfr}}$-algebra such that h^{\prime} $\bigcirc \mathrm{v}(\Psi) \geq e$ and yet $\mathrm{h}^{\prime} \mathrm{O} \mathrm{v}(\phi)<e . \square$

Theorem 5.3 ensures that $\mathbf{U L}_{\text {cfr }}$ is complete w.r.t. left-continuous conjunctive compensation-freely reinforced uninorms and their residua, i.e., for each formula ϕ, if $\vdash_{\text {ULofr }} \phi$, then there is a

346 Eunsuk Yang
left-continuous conjunctive compensation-freely reinforced uninorm \bigcirc and an evaluation v into $\left([0,1], \bigcirc{ }^{\prime \prime}, \rightharpoonup, \leq, 1,0, e, \partial\right)$, where \rightharpoonup is the residuum of $O^{\prime \prime}$, such that $\mathrm{v}(\phi)<e$.

6. Concluding remark

We investigated (not merely algebraic completeness but also) standard completeness for $\mathbf{U} \mathbf{L}_{\text {cfr }}$. This work can be generalized to the systems, which are axiomatic extensions of $\mathbf{U L}_{\text {cfr }}$. We shall investigate this in some subsequent paper.

References

Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic Properties", Archive for Mathematical Logic.
De Baets, B. and Fodor, J. (1999), "Residual Operators of Uninorms", Soft Computing 3, pp. 89-100.

Esteva, F., Gispert, L., Godo, L., and Montagna, F. (2002), "On the Standard and Rational Completeness of Some Axiomatic Extensions of the Monoidal T-norm Logic", Studia Logica 71, pp. 199-226.
Gottwald, S. (2001), A Treatise on Many-valued Logics, Baldock, Research Studies Press LTD.

Hájek, P. (1998), Metamathematics of Fuzzy Logic, Amsterdam, Kluwer.

Jenei, S and Montagna, F. (2002), "A Proof of Standard Completeness for Esteva and Godo's Logic MTL", Studia Logica 70, pp. 183-192.
Klement, E. P., Mesiar, R., and Pap, E. (2000), Triangular Norms, Dordrecht, Kluwer.
Metcalfe, G and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic 72, pp. 834-864.

Novak, V. (1990), "On the Syntactico-semantical Completeness of First-order Fuzzy Logic I, II", Kybernetika 26, pp. 47-66.
Yang, E. (2009), "On the Standard Completeness of an Axiomatic Extension of the Uninorm Logic", Korean Journal of Logic 12(2), pp. 115-139.

Yang, E. (2011), "Standard Completeness for the Weak Uninorm Mingle Logic WUML", Korean Journal of Logic 14(1), pp. 55-75.

348 Eunsuk Yang

Yang, E. (2013), "Standard Completeness for MTL", Korean Journal of Logic 16(3), pp. 437-452.

전북대학교 철학과, 비판적사고와논술연구소
Department of Philosophy \& Institute of Critical Thinking and Writing, Chonbuk National University eunsyang@jbnu.ac.kr

유니놈 논리의 확장을 재고함

양 은 석

이 글에서 우리는 보상 없는 강화 $(\operatorname{cfr})((\Phi \& \Psi) \rightarrow(\Phi \wedge \Psi))$ $\vee((\Phi \vee \Psi) \rightarrow(\Phi \& \Psi))$ 를 갖는 유니놈 논리의 확장에 대해 표 준 완전성이 제공될 수 있다는 것을 보인다. 이를 위하여, 먼저 보 상 없는 강화를 갖는 유니놈 논리 $\mathbf{U L}_{\mathrm{cfr}}$ 을 소개한다. 이 체계에 상 응하는 대수적 구조를 정의한 후, $\mathrm{UL}_{\mathrm{cfr}}$ 이 대수적으로 완전하다는 것을 보인다. 다음으로, $\mathrm{UL}_{\mathrm{cfr}}$ 이 표준적으로 완전하다는 것 즉 단위 실수 $[0,1]$ 에서 완전하다는 것을 Yang (2009)에서의 방법을 사용 하여 보인다.

주요어: (보상 없는 강화) 퍼지 논리, 유니놈, t -규범, 대수적 완 전성, 표준 완전성

[^0]: 1) While uninorms have in general the properties of compensation and full reinforcement, t-norms and t-conorms do not. Thus, the standard completeness results show that this method works for full reinforcement, but not for compensation.
