DOI QR코드

DOI QR Code

An Efficient Identification Algorithm in a Low SNR Channel

저 SNR을 갖는 채널에서 효율적인 인식 알고리즘

  • Hwang, Jeewon (Department of Information Technology, Chonbuk National University) ;
  • Cho, Juphil (Department of Radiocommunication Engineering, Kunsan National University)
  • Received : 2014.02.11
  • Accepted : 2014.03.20
  • Published : 2014.04.30

Abstract

Identification of communication channels is a problem of important current theoretical and practical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling. The method resorts to an adaptive filter with a linear constraint. In this paper, an approach is proposed that is based on decomposition. Indeed, the eigenvector corresponding to the minimum eigenvalue of the covariance matrix of the received signals contains the channel impulse response. And we present an adaptive algorithm to solve this problem. Proposed technique shows the better performance than one of existing algorithms.

통신채널의 인식문제는 현재 이론적 부분과 실제 관점 부분의 문제점을 가지고 있다. 최근에 이 문제를 해결키 위해 제안된 기법들은 안테나 구조와 시간 오버샘플링에 의해 유도된 다이버시티를 이용하고 있다. 이 방법은 선형 제한조건을 가진 적응필터를 이용하고 있다. 본 논문에서는 값 분할에 근거한 기법이 제안되었다. 수신신호 상관행렬의 최소 단일값에 의한 단일벡터는 채널 임펄스 응답을 포함하며 상기 문제를 해결키 위한 적응 알고리즘을 보인다. 제안된 기법은 기존 기법의 성능보다 우수함을 알 수 있다.

Keywords

References

  1. S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall, 1996.
  2. L. A. Baccala and S. Roy, "A new blind time-domain channel identification method based on cyclostationarity," IEEE Signal Processing Letters, vol. 1, no. 6, pp. 89-92, June 1994. https://doi.org/10.1109/97.295342
  3. L. Tong, G. Xu, and T. Kailath, "Blind identification and equalization based on second order statistics: A time domain approach," IEEE Trans. Inform. Theory, vol. 40, no. 2, pp. 340-349, Mar. 1994. https://doi.org/10.1109/18.312157
  4. G. Xu, H. Liu, L. Tong, and T. Kailath, "A least-squares approach to blind channel identification," IEEE Trans. Signal Processing, vol. 43, no. 12, pp. 2982-2983, Dec. 1995. https://doi.org/10.1109/78.476442
  5. L. Tong and S. Perreau, "Multichannel blind identification: from subspace to maximum likelihood methods," Proc. IEEE, vol. 86, no. 10. pp. 1951-1968, Oct. 1998.
  6. D. Gesbert and P. Duhamel, "Unbiased blind adaptive channel identification and equalization," IEEE Trans. Signal Processing, vol. 48, no. 1, Jan. 2000.
  7. O. L. Frost III, "A algorithm for linearly constrained adaptive arrays," Proc. IEEE, vol. 60, no. 8, pp. 926-935, Aug. 1972.
  8. R. W. Heath Jr., S. D. Halford, and G. B. Giannakis, "Adaptive blind channel identification of FIR channels for viterbi decoding," in Proc. 31th Asilomar Conf. Signals, Syst., and Comput., 1997.
  9. Y. Higa, H. Ochi, S. Kinjo, and H. Yamaguchi, "A gradient type algorithm for blind system identification and equalizer based on second order statistics," IEICE Trans. Fundamentals, vol, E32-A, no. 8, pp. 1544-1551, Aug. 1999.
  10. T. J. Endres, S. D. Halford, C. R. Johnson, and G. B. Giannakis, "Simulated comparisions of blind equalization algorithms for cold startup applications," Int J. Adaptive Contr. Signal Process., vol. 12, no. 3, pp. 283-301, May 1998. https://doi.org/10.1002/(SICI)1099-1115(199805)12:3<283::AID-ACS479>3.0.CO;2-E
  11. D. L. Goekel, A. O. Hero, and W. E. Stark, "Data-recursive algorithms for blind channel identification in oversampled communication systems," IEEE Trans. Signal Processing, vol. 46, no. 8, pp. 2217-2220, Aug. 1998.