
J. Korean Math. Soc. 51 (2014), No. 3, pp. 609–633
http://dx.doi.org/10.4134/JKMS.2014.51.3.609

SOME RESULTS ON CONDITIONALLY UNIFORMLY

STRONG MIXING SEQUENCES OF RANDOM VARIABLES

De-Mei Yuan, Xue-Mei Hu, and Bao Tao

Abstract. From the ordinary notion of uniformly strong mixing for a se-
quence of random variables, a new concept called conditionally uniformly
strong mixing is proposed and the relation between uniformly strong mix-
ing and conditionally uniformly strong mixing is answered by examples,
that is, uniformly strong mixing neither implies nor is implied by condi-
tionally uniformly strong mixing. A couple of equivalent definitions and
some of basic properties of conditionally uniformly strong mixing ran-
dom variables are derived, and several conditional covariance inequalities

are obtained. By means of these properties and conditional covariance
inequalities, a conditional central limit theorem stated in terms of condi-
tional characteristic functions is established, which is a conditional version
of the earlier result under the non-conditional case.

1. Introduction and definition

We will be working on a fixed probability space (Ω, A, P ). Consider a
sequence {Xn, n ≥ 1} of random variables and let

Ak
1 = σ (X1, . . . , Xk) , A∞

k+n = σ (Xk+n, Xk+n+1, . . .)

be the σ-algebras induced by the respective random variables, where k and n
are arbitrary positive integers. Then {Xn, n ≥ 1} is said to be uniformly strong
mixing or ϕ-mixing if there exists a nonnegative sequence ϕ (n) converging to
zero as n → ∞ such that

(1.1)
∣

∣P
(

B
∣

∣Ak
1

)

− P (B)
∣

∣ ≤ ϕ (n)
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for all B ∈ A∞
k+n whenever k ≥ 1, n ≥ 1. This concept was proposed by Ibragi-

mov [7] and condition (1.1) is essentially the extension to arbitrary processes of
the ergodicity coefficient introduced by Dobrushin [3, 4] for Markov processes.
An equivalent way of writing (1.1), due to Ibragimov [8], is that

(1.2) |P (AB)− P (A)P (B)| ≤ ϕ (n)P (A)

for every pair of A ∈ Ak
1 and B ∈ A∞

k+n whenever k ≥ 1, n ≥ 1.
For uniformly strong mixing random variables, many sharp and elegant re-

sults are available in literature, including Chen and Wang [1] for complete
moment convergence, Utev [19] for a central limit theorem, Peligrad [13] for a
weak invariance principle, Sen [16] for weak convergence of empirical processes,
Shao [17] for an almost sure invariance principle, Hu and Wang [6] for a large
deviation principle, Kuczmaszewska [10] for a strong law of large numbers,
Szewczak [18] for a Marcinkiewicz law, and the like.

Motivated by Prakasa Rao [14] extending the notion of strong mixing to that
of conditionally strong mixing, further work related to which can be found in
Yuan and Lei [21], we will now consider a new kind of mixing called con-
ditionally uniformly strong mixing, which is an extension to the above non-
conditional case.

Definition 1.1. Let F be a sub-σ-algebra of A. A sequence {Xn, n ≥ 1} of
random variables is called conditionally uniformly strong mixing or condition-
ally ϕ-mixing given F (F -uniformly strong mixing, in short) if there exists a
nonnegative F -measurable sequence of random variables ϕF (n) converging to
zero almost surely as n → ∞ such that

(1.3)
∣

∣P
(

B
∣

∣Ak
1 ∨ F

)

− P (B |F )
∣

∣ ≤ ϕF (n) a.s.

for every B ∈ A∞
k+n whenever k ≥ 1, n ≥ 1, where Ak

1∨F denotes the σ-algebra

generated by Ak
1 ∪ F .

The essence behind this definition is that these random variables involved
tend to be asymptotically F -independent as they get further and further apart.
This kind of process is certainly worth studying not only for its probabilistic
interest, but also because of the potential importance in statistical applications.
The sequence {Xn} is automatically F -uniformly strong mixing with ϕF (n) ≡
0, of course, provided it is F -independent.

As with (1.1) being equivalent to (1.2), an equivalent way (see Proposition
3.2 below) to express (1.3) is

(1.4) |P (A ∩B |F )− P (A |F )P (B |F )| ≤ ϕF (n)P (A |F ) a.s.

for each choice of events A ∈ Ak
1 and B ∈ A∞

k+n whenever k ≥ 1, n ≥ 1, which,
will be used in Section 2, is the key to many of our constructions of F -uniformly
strong mixing sequences.

For all k ≥ 1 and n ≥ 1, it follows that A∞
k+n ⊃ A∞

k+n+1. In order to avoid
being distracted from the main path, we assume from now on, without further



CONDITIONAL CENTRAL LIMIT THEOREMS 611

explicit mentioning, that the sequence {ϕF (n)} of mixing coefficients is almost
surely monotonically non-increasing.

Conditionally uniformly strong mixing reduces to the ordinary (uncondition-
ally) uniformly strong mixing if the conditional σ-algebra is taken as {Ø, Ω}.
Conditionally uniformly strong mixing may appear, at a first glance, to be syn-
chronized with uniformly strong mixing. However, this is not the case because
Examples 2.1 and 2.2 below show that uniformly strong mixing neither im-
plies nor is implied by conditionally uniformly strong mixing. Hence a natural
question is what results on uniformly strong mixing carry over to conditionally
uniformly strong mixing? Prakasa Rao [14] pointed out that one does have to
derive results under conditioning if there is a need even though the results and
proofs of such results may be analogous to those under the non-conditioning
setup. This motivates our original interest in investigating conditionally uni-
formly strong mixing sequences.

In the past few years, much effort has been dedicated to the extension of
dependent variables to the conditional case, and a large number of elegant re-
sults are available. For example, Ordóñez Cabrera et al. [12] extended negative
quadrant dependence to conditionally negative quadrant dependence, Yuan et
al. [20] extended negative association to conditional negative association, Yuan
and Xie [23] extended linearly negative quadrant dependence to conditionally
linearly negative quadrant dependence, Prakasa Rao [14], Yuan and Yang [24]
and Yuan and Zheng [25] extended association to conditional association, and
these could provide important clues to various derivations for the subject of
this paper.

Several examples indicating uniformly strong mixing neither implies nor is
implied by conditionally uniformly strong mixing are constructed in Section 2,
three equivalent definitions and some of basic properties are derived in Section
3 and several conditional covariance inequalities are established in Section 4.
From these properties and conditional covariance inequalities, a conditional
central limit theorem stated in terms of conditional characteristic functions is
developed in Section 5.

Following Prakasa Rao [14], for the sake of convenience, we will use the
notation PF (A) to denote P (A |F ) and EFX to denote E (X |F ). In addition,
CovF (X,Y ) stands for the conditional covariance of X and Y given F , i.e.

CovF (X, Y ) = EF (XY )− EFX ·EFY.

2. Several examples

As previously mentioned, uniformly strong mixing does not imply condi-
tionally uniformly strong mixing, and vice versa. We start by an example of
uniformly strong mixing random variables that are not conditionally uniformly
strong mixing.
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Example 2.1. Let Ω = (0, 1), A be the σ-algebra of Borel sets on Ω and P
be the Lebesgue measure on A. Setting, for every n ≥ 1,

An =
2n−1
∪
i=0

(

2i

2n+1
,
2i+ 1

2n+1

)

,

it can be readily proved that {An, n ≥ 1} forms a sequence of mutually inde-
pendent events and that P (An) = 1/2 for any n ≥ 1. If the random variables
Xn are defined by Xn = IAn

where IA denotes the indicator function, then
{Xn, n ≥ 1} is a uniformly strong mixing sequence with mixing coefficients
ϕ (n) ≡ 0.

Let D = (0, 1/4) and let F = {Ø, D, Dc, Ω} be the sub-σ-algebra gener-
ated by D. Some elementary calculations show that

PF (A1) =

{

P (A1 |D ) , ω ∈ D,
P (A1 |Dc ) , ω ∈ Dc

=

{

4P
{(

0, 1
4

)}

, ω ∈ D,
4
3P
{(

2
4 ,

3
4

)}

, ω ∈ Dc

=

{

1, ω ∈ D,
1
3 , ω ∈ Dc a.s.,

PF (Ak+n) =















P

{

2k+n−1∪
i=0

(

2i
2k+n+1 ,

2i+1
2k+n+1

)

|D
}

, ω ∈ D,

P

{

2k+n−1∪
i=0

(

2i
2k+n+1 ,

2i+1
2k+n+1

)

|Dc

}

, ω ∈ Dc

=















4P

{

2k+n−2−1∪
i=0

(

2i
2k+n+1 ,

2i+1
2k+n+1

)

}

, ω ∈ D,

4
3P

{

3·2k+n−2−1∪
i=2k+n−2

(

2i
2k+n+1 ,

2i+1
2k+n+1

)

}

, ω ∈ Dc

=

{

1
2 , ω ∈ D,
1
3 , ω ∈ Dc a.s.

and

PF (A1 ∩ Ak+n)

=















P

{

[(

0, 1
4

)

∪
(

2
4 ,

3
4

)]

∩
[

2k+n−1
∪
i=0

(

2i
2k+n+1 ,

2i+1
2k+n+1

)

]

|D
}

, ω ∈ D,

P

{

[(

0, 1
4

)

∪
(

2
4 ,

3
4

)]

∩
[

2k+n−1∪
i=0

(

2i
2k+n+1 ,

2i+1
2k+n+1

)

]

|Dc

}

, ω ∈ Dc

=















4P

{

(

0, 1
4

)

∩
[

2k+n−1
∪
i=0

(

2i
2k+n+1 ,

2i+1
2k+n+1

)

]}

, ω ∈ D,

4
3P

{

(

2
4 ,

3
4

)

∩
[

2k+n−1∪
i=0

(

2i
2k+n+1 ,

2i+1
2k+n+1

)

]}

, ω ∈ Dc

=















4P

{

2k+n−2−1
∪
i=0

(

2i
2k+n+1 ,

2i+1
2k+n+1

)

}

, ω ∈ D,

4
3P

{

3·2k+n−2−1∪
i=2·2k+n−2

(

2i
2k+n+1 ,

2i+1
2k+n+1

)

}

, ω ∈ Dc
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=

{

1
2 , ω ∈ D,
1
6 , ω ∈ Dc a.s.

for any n ≥ 1, so that
∣

∣PF (A1 ∩ Ak+n)− PF (A1)P
F (Ak+n)

∣

∣ = 1
6P

F (A1)

on Dc with P (Dc) = 3
4 . This indicates that {Xn, n ≥ 1} is not F -uniformly

strong mixing by means of (1.4).

Now we show an example of random variables that is conditionally uniformly
strong mixing but not uniformly strong mixing.

Example 2.2. We continue to follow the example that appears in Yuan et al.
[22]. Let {Xn, n ≥ 1} be the beta-Bernoulli process with parameters a > 0 and
b > 0. In this case, {Xn} is a sequence of conditionally independent indicator
random variables given Θ with

P (Xn = 1 |Θ = θ ) = θ, 0 < θ < 1

for each n ≥ 1, where Θ is a beta random variable with left parameter a and
right parameter b. Thus, Θ has probability density function fΘ (θ) given by

fΘ (θ) =
1

B (a, b)
θa−1 (1− θ)

b−1
, 0 < θ < 1.

Let F = σ (Θ). Then the conditional independence of {Xn, n ≥ 1} with re-
spect to F tells us that it is F -uniformly strong mixing with mixing coefficients
ϕF (n) ≡ 0.

However, {Xn, n ≥ 1} does not possess the uniformly strong mixing prop-
erty. This can be checked in the following manner. Let k be a positive integer
satisfying k ≥ a+ b. For any n ≥ 1, we find

P (Xk+n = 1) =

∫ 1

0

P (Xk+n = 1 |Θ = θ ) fΘ (θ)dθ

=
1

B (a, b)

∫ 1

0

θa (1− θ)b−1dθ

=
a

a+ b
,

P (X1 = 1, X2 = 1, . . . , Xk = 1) =

∫ 1

0

k
∏

i=1

P (Xi = 1 |Θ = θ )fΘ (θ)dθ

=
1

B (a, b)

∫ 1

0

θa+k−1 (1− θ)
b−1

dθ

=
(a+ k − 1) (a+ k − 2) · · · a

(a+ b+ k − 1) (a+ b+ k − 2) · · · (a+ b)

and

P (X1 = 1, X2 = 1, . . . , Xk = 1, Xk+n = 1)

=
(a+ k) (a+ k − 1) · · ·a

(a+ b+ k) (a+ b+ k − 1) · · · (a+ b)
.
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Consequently,

P (Xk+n = 1 |X1 = 1, X2 = 1, . . . , Xk = 1)

=
P (X1 = 1, X2 = 1, . . . , Xk = 1, Xk+n = 1)

P (X1 = 1, X2 = 1, . . . , Xk = 1)

=
a+ k

a+ b+ k
.

Furthermore, we have

|P (Xk+n = 1 |X1 = 1, X2 = 1, . . . , Xk = 1)− P (Xk+n = 1)|

=
bk

(a+ b+ k) (a+ b)

≥ b

2 (a+ b)
,

so that

sup
k≥1

sup
B∈A∞

k+n

∣

∣

∣
PAk

1 (B)− P (B)
∣

∣

∣
≥ b

2 (a+ b)
9 as n → ∞

and the assertion is proved according to (1.1).

The preceding examples show that in general uniformly strong mixing nei-
ther implies nor is implied by conditionally uniformly strong mixing, while the
forthcoming example indicates that both properties may hold.

Example 2.3. For every 1 ≤ j < ∞, let
{

Y
(j)
n , n ≥ 1

}

be a stationary Markov

chain satisfying condition (D0) (see Doob [5], pages 221 and 192). Under (D0),
it is shown (see [5], page 217) that there exist γj > 0 and 0 < ρj < 1 such that,
for all x ∈ R and B ∈ B (the Borel σ-algebra in R),

∣

∣

∣P (n) (x,B)− P (B)
∣

∣

∣ ≤ γjρ
n
j for all sufficiently large n,

where P (n) (x, B) is the n–step transition probability to B, given that the
chain started at x and P (·) is the (unique stationary) initial distribution. As
a result,
∣

∣

∣P
(

B
∣

∣

∣Y
(j)
1 , . . . , Y

(j)
k

)

− P (B)
∣

∣

∣ ≤ γjρ
n
j for every B ∈ σ

(

Y
(j)
k+n, Y

(j)
k+n+1, . . .

)

,

so that the chain is uniformly strong mixing with ϕj (n) = γjρ
n
j (for all suffi-

ciently large n).

We assume that
{

Xn = Y
(N)
n , n ≥ 1

}

is well-defined and N is a positive

integer-valued random variable independent of
{

Y
(j)
n , n ≥ 1, j ≥ 1

}

. Taking

F = σ (N), we have, for any k ≥ 1 and n ≥ 1,
[

P
(

Y
(N)
k+n ≤ y

∣

∣Ak
1 ∨ F

)

− P
(

Y
(N)
k+n ≤ y |F

)]

I (N = j)
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=
[

P
(

Y
(N)
k+n ≤ y

∣

∣

∣Y
(N)
1 , . . . , Y

(N)
k , N

)

− P
(

Y
(N)
k+n ≤ y |N

)]

I (N = j)

=
[

P
(

Y
(j)
k+n ≤ y

∣

∣

∣Y
(j)
1 , . . . , Y

(j)
k

)

− P
(

Y
(j)
k+n ≤ y

)]

I (N = j)

(by independence of
{

Y (j)
n

}

and N)

=
{

E
[

I
(

Y
(j)
k+n ≤ y

) ∣

∣

∣Y
(j)
k

]

− EI
(

Y
(j)
k+n ≤ y

)}

I (N = j)

(by the Markov property),

so that, on (N = j),
∣

∣

∣P
(

Y
(N)
k+n ≤ y

∣

∣Ak
1 ∨ F

)

− P
(

Y
(N)
k+n ≤ y |F

)∣

∣

∣

=
∣

∣

∣
E
[

I
(

Y
(j)
n+1 ≤ y

) ∣

∣

∣
Y

(j)
1

]

− EI
(

Y
(j)
1 ≤ y

)∣

∣

∣

(by stationarity)

=

∣

∣

∣

∣

∫

R

I(−∞,y) (z)P
(n)
(

Y
(j)
1 , dz

)

−
∫

R

I(−∞,y) (z)P (dz)

∣

∣

∣

∣

≤
∫

R

∣

∣

∣P (n)
(

Y
(j)
1 , dz

)

− P (dz)
∣

∣

∣

≤
∥

∥

∥P (n)
(

Y
(j)
1 , ·

)

− P (·)
∥

∥

∥

≤ rjρ
n
j .

It can now be shown that, for any B ∈ A∞
k+n,

∣

∣P
(

B
∣

∣Ak
1 ∨ F

)

− P (B |F )
∣

∣ ≤
∞
∑

j=1

rjρ
n
j I (N = j),

and therefore
{

Xn = Y
(N)
n , n ≥ 1

}

is F -uniformly strong mixing according to

(1.3).

3. Equivalent definitions and basic properties

To facilitate immediate use of conditionally uniformly strong mixing, we
first present its three equivalent definitions. These results are useful in var-
ious derivations and are interesting in their right, so we distinguish them as
propositions.

Proposition 3.1. A sequence {Xn, n ≥ 1} is F-uniformly strong mixing with

coefficient {ϕF (n)} if and only if

(3.1)
∣

∣

∣PF
(

Ã ∩B
)

− PF
(

Ã
)

PF (B)
∣

∣

∣ ≤ ϕF (n)PF
(

Ã
)

a.s.

for each choice of events Ã ∈ Ak
1 ∨ F and B ∈ A∞

k+n whenever k ≥ 1, n ≥ 1.
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Proof. Assuming that (1.3) holds, so that

−ϕF (n) ≤ PAk
1∨F (B)− PF (B) ≤ ϕF (n) a.s.

Multiplying each side of this inequality by IÃ and then taking conditional
expectation given F , we get

−ϕF (n)PF
(

Ã
)

≤ PF
(

Ã ∩B
)

− PF
(

Ã
)

PF (B) ≤ ϕF (n)PF
(

Ã
)

a.s.,

which is just (3.1).
Conversely, suppose now that (3.1) holds and that (1.3) is violated. Then

there must exist a set B ∈ A∞
k+n such that

∣

∣

∣PAk
1∨F (B)− PF (B)

∣

∣

∣ > ϕF (n)

on a set Ã with Ã ∈ Ak
1 ∨ F and P

(

Ã
)

> 0. Set

Ã+ = Ã ∩
{

PAk
1∨F (B)− PF (B) > ϕF (n)

}

and

Ã− = Ã ∩
{

PAk
1∨F (B)− PF (B) < −ϕF (n)

}

.

Then at least one of P
(

Ã+
)

and P
(

Ã−
)

must be positive. Let P
(

Ã+
)

> 0,

then

E
{[

PAk
1∨F (B)− PF (B)

]

IÃ+

}

> E {ϕF (n) IÃ+} ,
which implies

EF
{[

PAk
1∨F (B)− PF (B)

]

IÃ+

}

> EF {ϕF (n)PF (B) IÃ+

}

a.s.

on some A ∈ A with P (A) > 0, or equivalently,

PF
(

Ã+ ∩B
)

− PF
(

Ã+
)

PF (B) > ϕF (n)PF
(

Ã+
)

PF (B) a.s.

on such a set A, so that (3.1) is violated for the set Ã+ and that is a contra-

diction. Finally, (1.3) is verified in the same way for P
(

Ã−
)

> 0. �

With the help of the previous proposition, we next fulfill our promise made
in Section 1 and prove the equivalence between (1.3) and (1.4), which has been
used in Example 2.1.

Proposition 3.2. A sequence {Xn, n ≥ 1} is F-uniformly strong mixing if

and only if (1.4) holds.

Proof. We only need to show that (1.4) implies (3.1). For fixed k ≥ 1 and
n ≥ 1, let

E =

{

m∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

: A
(1)
i ∈ Ak

1 , A
(2)
i ∈ F , i = 1, . . . ,m, m ≥ 1

}

,
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then E is an algebra. Let B ∈ A∞
k+n and let

A′ =
{

Ã ∈ A :
∣

∣

∣PF
(

Ã ∩B
)

− PF
(

Ã
)

PF (B)
∣

∣

∣ ≤ ϕF (n)PF
(

Ã
)

a.s.
}

,

then A′ is a monotone class. If we can prove that A′ ⊃ E , then from Theorem
1.3.1 in [2] it follows that

A′ ⊃ m (E) = σ (E) = Ak
1 ∨ F ,

where m (E) denotes the monotone class generated by E , and therefore (3.1)
holds.

We now focus our attention on the proof of A′ ⊃ E . For this purpose we
use the conditional version of the inclusion-exclusion formula (c.f. Lin and Bai
[11], Chapter 1.1) to conclude that

PF
{[

m
∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

]

∩B

}

− PF
{

m
∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

}

PF (B)

= PF
{

m∪
i=1

(

A
(1)
i ∩A

(2)
i ∩B

)

}

− PF
{

m∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

}

PF (B)

=
m
∑

i=1

[

PF
(

A
(1)
i ∩B

)

− PF
(

A
(1)
i

)

PF (B)
]

I
A

(2)
i

−
∑

1≤i<j≤m

[

PF
(

A
(1)
i ∩ A

(1)
j ∩B

)

− PF
(

A
(1)
i ∩ A

(1)
j

)

PF (B)
]

I
A

(2)
i

∩A
(2)
j

+ · · ·

+ (−1)m−1
[

PF
(

A
(1)
1 ∩ · · · ∩ A(1)

m ∩B
)

− PF
(

A
(1)
1 ∩ · · · ∩A(1)

m

)

PF (B)
]

× I
A

(2)
1 ∩···∩A

(2)
m

a.s.

For any ω ∈ ∪m
i=1 A

(2)
i , we may (by relabeling indices if necessary) assume

ω ∈ ∩r
i=1 A

(2)
i but ω /∈ ∪m

i=r+1 A
(2)
i , 1 ≤ r ≤ m, and then obtain from the above

inequality and (1.4),

PF
{[

m∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

]

∩B

}

(ω)− PF
{

m∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

}

PF (B) (ω)

=
r
∑

i=1

[

PF
(

A
(1)
i ∩B

)

− PF
(

A
(1)
i

)

PF (B)
]

(ω)

−
∑

1≤i<j≤r

[

PF
(

A
(1)
i ∩A

(1)
j ∩B

)

− PF
(

A
(1)
i ∩ A

(1)
j

)

PF (B)
]

(ω)

+ · · ·

+ (−1)r−1
[

PF
(

A
(1)
1 ∩ A

(1)
2 ∩ · · · ∩ A(1)

r ∩B
)

−PF
(

A
(1)
1 ∩ A

(1)
2 ∩ · · · ∩A(1)

r

)

PF (B)
]

(ω)
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=

{

PF
[(

r∪
i=1

A
(1)
i

)

∩B

]

− PF
(

r∪
i=1

A
(1)
i

)

PF (B)

}

(ω)

≤
[

ϕF (n)PF
(

r
∪
i=1

A
(1)
i

)]

(ω)

=

[

ϕF (n)PF
{

r∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

}]

(ω)

≤
[

ϕF (n)PF
{

m∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

}]

(ω) ,

that is,

PF
{[

m
∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

]

∩B

}

− PF
{

m
∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

}

PF (B)

≤ ϕF (n)PF
{

m∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

}

on ∪m
i=1 A

(2)
i . But the left-hand side of the inequality above equals to 0 outside

∪m
i=1 A

(2)
i , so we have

PF
{[

m
∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

]

∩B

}

− PF
{

m
∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

}

PF (B)

≤ ϕF (n)PF
{

m∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

}

a.s.,

and similarly

PF
{[

m
∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

]

∩B

}

− PF
{

m
∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

}

PF (B)

≥ − ϕF (n)PF
{

m∪
i=1

(

A
(1)
i ∩A

(2)
i

)

}

a.s.

The last two inequalities yield
∣

∣

∣

∣

PF
{[

m
∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

]

∩B

}

− PF
{

m
∪
i=1

(

A
(1)
i ∩ A

(2)
i

)

}

PF (B)

∣

∣

∣

∣

≤ ϕF (n)PF
{

m∪
i=1

(

A
(1)
i ∩A

(2)
i

)

}

a.s.,

this concludes the proof of the fact that A′ ⊃ E . �

Following this direction we can develop the third characterization of a con-
ditionally uniformly strong mixing sequence, which will be used in Section 4.

Proposition 3.3. A sequence {Xn, n ≥ 1} is F-uniformly strong mixing with

coefficient {ϕF (n)} if and only if

(3.2)
∣

∣

∣PF
(

Ã ∩ B̃
)

− PF
(

Ã
)

PF
(

B̃
)∣

∣

∣ ≤ ϕF (n)PF
(

Ã
)

a.s.
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for each choice of events Ã ∈ Ak
1 ∨ F and B̃ ∈ A∞

k+n ∨ F whenever k ≥ 1,
n ≥ 1.

Proof. We only need to show that (3.1) implies (3.2). For fixed k ≥ 1 and
n ≥ 1, let

D =

{

m∪
i=1

(

B
(1)
i ∩B

(2)
i

)

: B
(1)
i ∈ A∞

k+n, B
(2)
i ∈ F , i = 1, . . . ,m, m ≥ 1

}

,

then D is an algebra. Let Ã ∈ Ak
1 ∨ F and let

A′′ =
{

B̃ ∈ A :
∣

∣

∣PF
(

Ã ∩ B̃
)

− PF
(

Ã
)

PF
(

B̃
)∣

∣

∣ ≤ ϕF (n)PF
(

Ã
)

a.s.
}

,

then A′′ is a monotone class. Analogously to the proof of Proposition 3.2, one
can show that A′′ ⊃ D, implying that

A′′ ⊃ m (D) = σ (D) = A∞
k+n ∨ F ,

which yields (3.2). �

We now develop several basic properties of F -uniformly strong mixing ran-
dom variables. The following property is a direct consequence of Proposition
3.2.

Proposition 3.4. If {Xn, n ≥ 1} is F-uniformly strong mixing and f (·) is

an arbitrary real function, then {f (Xn) , n ≥ 1} is also F-uniformly strong

mixing with the same coefficient {ϕF (n)}.
The next property is immediate from the definition of conditionally uni-

formly strong mixing by noting that the mixing coefficients are assumed to be
non-increasing.

Proposition 3.5. If {Xn, n ≥ 1} is an F-uniformly strong mixing sequence

with coefficient {ϕF (n)}, then so is
{

X̂n =
∑in

k=in−1+1 Xk, n ≥ 1
}

, where 0 =

i0 < i1 < i2 < · · · .
The following property will be used frequently in subsequent sections.

Proposition 3.6. If {Xn, n ≥ 1} is an F-uniformly strong mixing sequence

with coefficient {ϕF (n)}, and {Yn, n ≥ 1} is an F-measurable sequence, then

(i) Each of the relations (1.3) and (1.4) holds for all A ∈ Ak
1 ∨ Gk

1 , B ∈
A∞

n+k ∨ G∞
n+k and k ≥ 1, n ≥ 1, where Gl

j = σ (Yi, j ≤ i ≤ l), 1 ≤ j ≤ l ≤ ∞;
(ii) Each of {XnYn, n ≥ 1} and {Xn ± Yn, n ≥ 1} is F-uniformly strong

mixing;
(iii) The sequence

{

Xn − EFXn, n ≥ 1
}

is F-centered (i.e. conditional ex-

pectation with respect to F equals zero) and F-uniformly strong mixing.

Proof. Part (iii) follows immediately from part (ii). Part (ii) is a direct conse-
quence of (i) from the observations that

σ (XiYi, j ≤ i ≤ l) ⊂ Al
j ∨ Gl

j , 1 ≤ j ≤ l ≤ ∞
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and
σ (Xi ± Yi, j ≤ i ≤ l) ⊂ Al

j ∨ Gl
j , 1 ≤ j ≤ l ≤ ∞,

whereas part (i) follows from Proposition 3.2 since Gk
1 ⊂ F and G∞

n+k ⊂ F for
any k ≥ 1 and n ≥ 1. �

4. Conditional covariance inequalities

As regards to covariance inequalities for uniformly strong mixing random
variables, there are plenty of results in literature such as Lin and Bai [11],
Roussas and [15], etc. Inequalities of this kind are potentially useful for Ioan-
nides obtaining limit theorems, especially strong laws of large numbers and
central limit theorems.

In this section, we derive some covariance inequalities for conditionally uni-
formly strong mixing random variables, which are conditional versions of the
corresponding ones in the non-conditional case.

Theorem 4.1. Assume that {Xn, n ≥ 1} is an F-uniformly strong mixing

sequence with coefficient {ϕF (n)} and Y and Z are Ak
1 and A∞

k+n-measurable

random variables, respectively. If

EF |Y |p < ∞ a.s. and EF |Z|q < ∞ a.s. for p, q > 1 with
1

p
+

1

q
= 1,

then

(4.1)
∣

∣EFY Z − EFY ·EFZ
∣

∣ ≤ 2ϕ
1/p
F (n)

(

EF |Y |p
)1/p (

EF |Z|q
)1/q

a.s.

Remark 4.2. If Y and Z are complex-valued random variables, then inequality
(4.1) becomes

∣

∣EFY Z − EFY ·EFZ
∣

∣ ≤ 8ϕ
1/p
F (n)

(

EF |Y |p
)1/p (

EF |Z|q
)1/q

a.s.

Proof of Theorem 4.1. The basic approach of this proof is based on 10.1.d in
[11] and Theorem 5.1 in [15] but the details are quite different. Suppose first
that Y and Z are simple random variables. Specifically, let

Y =
∑

i

aiIAi
, Z =

∑

j

bjIBj
,

where both
∑

i and
∑

j are finite sums and Ai ∩ Ar = Ø (i 6= r), Bj ∩ Bl =

Ø (j 6= l), Ai, Ar ∈ Ak
1 , Bj , Bl ∈ A∞

k+n. Then, by the telescopic property of
conditional expectation,

EFY Z − EFY ·EFZ =
∑

i,j

aibj
[

EFIAi
IBj

− EFIAi
EFIBj

]

=
∑

i,j

aibjE
F [IAi

(

EAi∨FIBj
− EFIBj

)]

= EF





∑

i

aiIAi

∑

j

bj
(

EAi∨FIBj
− EFIBj

)







CONDITIONAL CENTRAL LIMIT THEOREMS 621

= EF

(

∑

i

aiξiIAi

)

,

where

(4.2) ξi =
∑

j

bj
(

EAi∨FIBj
− EFIBj

)

.

Set

(4.3) ξ =
∑

i

ξiIAi
,

then
∣

∣

∣

∣

∣

EF

(

∑

i

aiξiIAi

)∣

∣

∣

∣

∣

=
∣

∣EF (Y ξ)
∣

∣ ≤ EF |Y ξ| ≤
(

EF |Y |p
)1/p (

EF |ξ|q
)1/q

,

so that

(4.4)
∣

∣EFY Z − EFY ·EFZ
∣

∣ ≤
(

EF |Y |p
)1/p (

EF |ξ|q
)1/q

.

By (4.2) and (4.3),

(4.5) EF |ξ|q = EF

(

∑

i

IAi
|ξi|q

)

≤ EF





∑

i

IAi





∑

j

|bj |
∣

∣EAi∨FIBj
− EFIBj

∣

∣





q



≤ EF

{

∑

i

IAi





∑

j

|bj |
(

EAi∨FIBj
+ EFIBj

)1/q

·
∣

∣EAi∨FIBj
− EFIBj

∣

∣

1/p
]q}

≤ EF







∑

i

IAi





∑

j

|bj |q
(

EAi∨FIBj
+ EFIBj

)





·





∑

j

∣

∣EAi∨FIBj
− EFIBj

∣

∣





q/p










.

Here, we have used an elementary inequality

∑

j
|αjβj | ≤

(

∑

j
|αj |p

)1/p (∑

j
|βj |q

)1/q

for nonnegative numbers p, q with 1/p+1/q = 1. Next, define the sets J+ and
J− by

J+ =
{

j : EAi∨FIBj
− EFIBj

> 0 a.s.
}

,
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J− =
{

j : EAi∨FIBj
− EFIBj

< 0 a.s.
}

,

then
∑

j

∣

∣EAi∨FIBj
− EFIBj

∣

∣(4.6)

=
∑

j∈J+

(

EAi∨FIBj
− EFIBj

)

+
∑

j∈J−

(

EFIBj
− EAi∨FIBj

)

=

∣

∣

∣

∣

∣

∣

EAi∨F





∑

j∈J+

IBj



− EF





∑

j∈J+

IBj





∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

EFi





∑

j∈J−

IBj



− EAi∨F





∑

j∈J−

IBj





∣

∣

∣

∣

∣

∣

.

But by the conditionally uniformly strong mixing property,
∣

∣

∣

∣

∣

∣

EAi∨F





∑

j∈J+

IBj



− EF





∑

j∈J+

IBj





∣

∣

∣

∣

∣

∣

(4.7)

=

∣

∣

∣

∣

∣

∣

EAi∨F



EAk
1∨F





∑

j∈J+

IBj







− EAi∨F



EF





∑

j∈J+

IBj









∣

∣

∣

∣

∣

∣

≤ EAi∨F

∣

∣

∣

∣

∣

∣

EAk
1∨F





∑

j∈J+

IBj



− EF





∑

j∈J+

IBj





∣

∣

∣

∣

∣

∣

≤ ϕF (n) ,

and similarly,

(4.8)

∣

∣

∣

∣

∣

∣

EF





∑

j∈J−

IBj



− EAi∨F





∑

j∈J−

IBj





∣

∣

∣

∣

∣

∣

≤ ϕF (n) .

Putting (4.7) and (4.8) into (4.6), and then putting (4.6) into (4.5), we have

EF |ξ|q ≤ 2q/pϕ
q/p
F (n)EF







∑

i

IAi





∑

j

|bj |q
(

EAi∨FIBj
+ EFIBj

)











= 2q/pϕ
q/p
F (n)

∑

i

∑

j

|bj |q
(

EFIAi∩Bj
+ EFIAi

· EFIBj

)

= 21+q/pϕ
q/p
F (n)

∑

j

|bj |q EFIBj

= 2qϕ
q/p
F (n)EF |Z|q a.s.,
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which coupled with (4.4) leads to (4.1) in the case where Y and Z are simple
random variables.

For the general case, similarly to the proofs of Lemmas 4.1 and 4.2 in Roussas
and Ioannides [15], we can conclude that there exist simple random variables
Yn and Zn such that, as n → ∞,

EFYn → EFY, EFZn → EFZ,

EF |Yn|p → EF |Y |p , EF |Zn|q → EF |Z|q ,
and

EFYnZn → EFY Z.

The desired inequality follows from the above relations and the result proved
for Yn and Zn. �

The right-hand side in the result of Theorem 4.1 contains the factor ϕ
1/p
F (n)

with p > 1. In certain situations, a closer bound can be replaced by eliminating
the exponent 1/p. More precisely, one has:

Theorem 4.3. Assume that {Xn, n ≥ 1}is an F-uniformly strong mixing se-

quence with coefficient {ϕF (n)}, Y and Z are Ak
1 and A∞

k+n-measurable ran-

dom variables, respectively. If |Y | ≤ YF a.s. and |Z| ≤ ZF a.s., where YF and

ZF are F-measurable random variables, then

(4.9)
∣

∣EFY Z − EFY · EFZ
∣

∣ ≤ 2ϕF (n)YFZF a.s.

Remark 4.4. If Y and Z are complex-valued random variables, then inequality
(4.9) becomes

∣

∣EFY Z − EFY ·EFZ
∣

∣ ≤ 8ϕF (n)YFZF a.s.

Proof of Theorem 4.3. By the telescopic property of conditional expectation,
∣

∣EFY Z − EFY · EFZ
∣

∣(4.10)

=
∣

∣

∣EF
(

EAk
1∨FY Z

)

− EFY · EFZ
∣

∣

∣

=
∣

∣

∣EF
[

Y
(

EAk
1∨FZ

)]

− EF (Y EFZ
)

∣

∣

∣

=
∣

∣

∣
EF

[

Y
(

EAk
1∨FZ − EFZ

)]∣

∣

∣

≤ YFE
F
∣

∣

∣EAk
1∨FZ − EFZ

∣

∣

∣

= YFE
F
[(

EAk
1∨FZ − EFZ

)

IA+

]

− YFE
F
[(

EAk
1∨FZ − EFZ

)

IA−

]

,

where

A+ =
{

EAk
1∨FZ − EFZ ≥ 0

}

, A− =
{

EAk
1∨FZ − EFZ < 0

}

,

so that A+, A− ∈ Ak
1 ∨ F . But

EF
[(

EAk
1∨FZ − EFZ

)

IA+

]

(4.11)
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=
∣

∣

∣EF
[(

EAk
1∨FZ − EFZ

)

IA+

]∣

∣

∣

=
∣

∣

∣EF
[

EAk
1∨F (ZIA+)

]

− EFZ ·EFIA+

∣

∣

∣

=
∣

∣EF (ZIA+)− EFZ · EFIA+

∣

∣

=
∣

∣

∣EA∞

k+n∨F [EF (ZIA+)
]

− EF (ZEFIA+

)

∣

∣

∣

=
∣

∣

∣
EF

[

EA∞

k+n∨F (ZIA+)− ZEFIA+

]∣

∣

∣

=
∣

∣

∣EF
[

Z
(

EA∞

k+n∨FIA+ − EFIA+

)]∣

∣

∣

≤ ZFE
F
∣

∣

∣EA∞

k+n∨FIA+ − EFIA+

∣

∣

∣

= ZFE
F
[(

EA∞

k+n∨FIA+ − EFIA+

)

IB+

]

− ZFE
F
[(

EA∞

k+n∨FIA+ − EFIA+

)

IB−

]

,

where

B+ =
{

EA∞

k+n∨FIA+ − EFIA+ ≥ 0
}

, B− =
{

EA∞

k+n∨FIA+ − EFIA+ < 0
}

,

so that B+, B− ∈ A∞
k+n ∨ F . Furthermore,

EF
[(

EA∞

k+n∨FIA+ − EFIA+

)

IB+

]

= PF (A+ ∩B+
)

− PF (A+
)

PF (B+
)

,

and similarly

EF
[(

EA∞

k+n∨FIA+ − EFIA+

)

IB−

]

= PF (A+ ∩B−)− PF (A+
)

PF (B−) .

By taking advantage of Proposition 3.3 and applying (4.11), we conclude that

EF
[(

EAk
1∨FZ − EFZ

)

IA+

]

(4.12)

≤ ZF
∣

∣PF (A+ ∩B+
)

− PF (A+
)

PF (B+
)∣

∣

+ ZF
∣

∣PF (A+ ∩B−)− PF (A+
)

PF (B−)∣
∣

≤ 2ZFϕF (n)PF (A+
)

,

and symmetrically

(4.13) −EF
[(

EAk
1∨FZ − EFZ

)

IA−

]

≤ 2ZFϕF (n)PF (A−) .

Inequality (4.9) is proved by means of (4.10), (4.12) and (4.13). �

Our third conditional covariance inequality is a natural multivariate exten-
sion of Theorem 4.1.

Theorem 4.5. Assume that {Xn, n ≥ 1}is an F-strong mixing sequence with

coefficient {ϕF (n)} and assume that integers si, ti, i = 1, 2, . . . , n satisfy

1 = s1 < t1 < s2 < t2 < · · · < sn < tn with si+1 − ti ≥ τ, i = 1, . . . , n− 1.
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If Yi are Ati
si
-measurable random variables such that

EF |Yi|pi < ∞ a. s. for pi > 1, i = 1, . . . , n with
1

p1
+ · · ·+ 1

pn
= 1,

then

(4.14)

∣

∣

∣

∣

∣

EF
n
∏

i=1

Yi −
n
∏

i=1

EFYi

∣

∣

∣

∣

∣

≤ 2 (n− 1)ϕ
1/rn
F (τ)

n
∏

i=1

(

EF |Yi|pi
)1/pi

a.s.,

where rn = max {p1, . . . , pn}.

Proof. It is routine to verify that
∣

∣

∣

∣

∣

EF
n
∏

i=1

Yi −
n
∏

i=1

EFYi

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

EF

[

Y1

(

n
∏

i=2

Yi

)]

− EFY1 ·EF
n
∏

i=2

Yi

∣

∣

∣

∣

∣

(4.15)

+ EF |Y1|
∣

∣

∣

∣

∣

EF
n
∏

i=2

Yi −
n
∏

i=2

EFYi

∣

∣

∣

∣

∣

.

Inequality (4.14) holds for n = 2, by means of Theorem 4.1. Assuming it to be
true for n− 1, we have

∣

∣

∣

∣

∣

EF

[

Y1

(

n
∏

i=2

Yi

)]

− EFY1 ·EF
n
∏

i=2

Yi

∣

∣

∣

∣

∣

≤ 2ϕ
1/p1

F (τ)
(

EF |Y1|p1
)1/p1

(

EF

∣

∣

∣

∣

∣

n
∏

i=2

Yi

∣

∣

∣

∣

∣

p)1/p

,

where 1/p = 1/p2+ · · ·+1/pn < 1. Applying the conditional Hölder inequality
with qi = pi/p, i = 1, 2, . . . , n (so that 1/q2 + · · ·+ 1/qn = 1), we have

EF

∣

∣

∣

∣

∣

n
∏

i=2

Yi

∣

∣

∣

∣

∣

p

≤
n
∏

i=2

(

EF |Yi|pqi
)1/qi

=

n
∏

i=2

(

EF |Yi|pi
)1/qi

,

and therefore
(

EF

∣

∣

∣

∣

∣

n
∏

i=2

Yi

∣

∣

∣

∣

∣

p)1/p

≤
n
∏

i=2

(

EF |Yi|pi
)1/pi

.

Thus, inserting this in the previous majorization, it follows
∣

∣

∣

∣

∣

EF

[

Y1

(

n
∏

i=2

Yi

)]

− EFY1 ·EF
n
∏

i=2

Yi

∣

∣

∣

∣

∣

(4.16)

≤ 2ϕ
1/rn
F (τ)

n
∏

i=1

(

EF

∣

∣

∣

∣

∣

n
∏

i=1

Yi

∣

∣

∣

∣

∣

pi
)1/pi

.
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Next, apply the induction hypothesis with the same qi, i = 1, 2, . . . , n as
defined above to obtain

(4.17)

∣

∣

∣

∣

∣

EF
n
∏

i=2

Yi −
n
∏

i=2

EFYi

∣

∣

∣

∣

∣

≤ 2 (n− 2)ϕ
1/r∗n−1

F (τ)
n
∏

i=2

(

EF |Yi|qi
)1/qi

,

where r∗n−1 = max {q2, . . . , qn}. Since, qi < pi, i = 2, . . . , n, r∗n−1 < rn and
(

EF |Yi|qi
)1/qi ≤

(

EF |Yi|qi
)1/pi

, i = 2, . . . , n. Thus (4.17) yields
∣

∣

∣

∣

∣

EF
n
∏

i=2

Yi −
n
∏

i=2

EFYi

∣

∣

∣

∣

∣

≤ 2 (n− 2)ϕ
1/rn
F (τ)

n
∏

i=2

(

EF |Yi|pi
)1/pi

,

and therefore the second member on the right-hand side of (4.15) becomes

EF |Y1|
∣

∣

∣

∣

∣

EF
n
∏

i=2

Yi −
n
∏

i=2

EFYi

∣

∣

∣

∣

∣

(4.18)

≤ 2 (n− 2)ϕ
1/rn
F (τ)

n
∏

i=1

(

EF |Yi|pi
)1/pi

.

The desired result (4.14) are provided by (4.16) and (4.18) by way of (4.15). �

Our fourth conditional covariance inequality is a natural multivariate exten-
sion of Theorem 4.3.

Theorem 4.6. Assume that {Xn, n ≥ 1} is an F-uniformly strong mixing se-

quence with coefficient {ϕF (n)} and assume that integers si, ti, i = 1, 2, . . . , n
satisfy

1 = s1 < t1 < s2 < t2 < · · · < sn < tn with si+1 − ti ≥ τ, i = 1, 2, . . . , n− 1.

If |Yi| ≤ Yi,F a.s.,i = 1, 2, . . . , n, where Yi,F is F-measurable random variables,

then
∣

∣

∣

∣

∣

EF
n
∏

i=1

Yi −
n
∏

i=1

EFYi

∣

∣

∣

∣

∣

≤ 2 (n− 1)ϕF (τ)

n
∏

i=1

Yi,F a.s.

Proof. The result holds for n = 2, by means of Theorem 4.3. Assuming it to
be true for n− 1, we have

∣

∣

∣

∣

∣

EF
n
∏

i=1

Yi −
n
∏

i=1

EFYi

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

EF

[(

n−1
∏

i=1

Yi

)

Yn

]

− EF
n−1
∏

i=1

Yi · EFYn

∣

∣

∣

∣

∣

+ EF |Yn|
∣

∣

∣

∣

∣

EF
n−1
∏

i=1

Yi −
n−1
∏

i=1

EFYi

∣

∣

∣

∣

∣
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≤ 2ϕF (τ)

(

n−1
∏

i=1

Yi,F

)

Yn,F + Yn,F · 2 (n− 2)ϕF (τ)

n−1
∏

i=1

Yi,F

= 2 (n− 1)

n
∏

i=1

Yi,F .
�

The following Theorems 4.5′ and 4.6′ are essentially extensions of Theorems
4.5 and 4.6 to the case of complex-valued random variables, respectively. They
can be proved by induction, replacing appeals to Theorems 4.1 and 4.3 with
appeals to Remarks 4.2 and 4.4, respectively.

Theorem 4.5′. Assume that {Xn, n ≥ 1} is an F-strong mixing sequence of

complex-valued random variables with coefficient {ϕF (n)} and assume that in-

tegers si, ti, i = 1, 2, . . . , n satisfy

1 = s1 < t1 < s2 < t2 < · · · < sn < tn with si+1 − ti ≥ τ, i = 1, 2, . . . , n− 1.

If Yi are Ati
si
-measurable random variables such that

EF |Yi|pi < ∞ a.s. for pi > 1, i = 1, . . . , n with
1

p1
+ · · ·+ 1

pn
= 1,

then
∣

∣

∣

∣

∣

EF
n
∏

i=1

Yi −
n
∏

i=1

EFYi

∣

∣

∣

∣

∣

≤ 8 (n− 1)ϕ
1/rn
F (τ)

n
∏

i=1

(

EF |Yi|pi
)1/pi

a.s.

Theorem 4.6′. Assume that {Xn, n ≥ 1} is an F- uniformly strong mixing

sequence of complex-valued random variables with coefficient {ϕF (n)} and as-

sume that integers si, ti, i = 1, 2, . . . , n satisfy

1 = s1 < t1 < s2 < t2 < · · · < sn < tn with si+1− ti ≥ τ, i = 1, 2, . . . , n− 1.

If |Yi| ≤ Yi,F a.s., i = 1, 2, . . . , n, where Yi,F are F-measurable random vari-

ables, then
∣

∣

∣

∣

∣

EF
n
∏

i=1

Yi −
n
∏

i=1

EFYi

∣

∣

∣

∣

∣

≤ 8 (n− 1)ϕF (τ)

n
∏

i=1

Yi,F a.s.

5. Conditional central limit theorem

A sequence {Xn, n ≥ 1} is called F -stationary if for all 1 ≤ t1 < · · · < tk <
∞ and r ≥ 1, the joint distribution of (Xt1 , . . . , Xtk) conditioned on F is the
same as the joint distribution of (Xt1+r, . . . , Xtk+r) conditioned on F a.s.

We establish two lemmas prior to our conditional central limit theorem.
The first one is an analogue of Lemma 4.1 in Yuan and Lei [21], which follows
immediately from the result on page 124 of Knopp [9], we here give another
proof for the sake of completeness.

Lemma 5.1.
∑∞

n=1 ϕ
p
F (n) < ∞ a.s. for some 0 < p < 1 implies nϕF (n) → 0

a.s. as n → ∞.
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Proof. The definition of definite integral ensures

1

n

n
∑

j=1

(

j

n

)p

≥
∫ 1

0

xpdx =
1

1 + p
≥ 1

n1−p
for n ≥ (1 + p)

1/(1−p)
,

which gives

(5.1)

n
∑

j=1

jp ≥ n2p for n ≥ (1 + p)
1/(1−p)

.

On the other hand, applying the Kronecker lemma with
∑∞

n=1 ϕ
p
F (n) <

∞ a.s., we get

n−p

n
∑

j=1

jpϕp
F (j) → 0 as n → ∞,

which together with (5.1) yields

ϕp
F (n)np = ϕp

F (n)n−p · n2p ≤ ϕp
F (n)n−p

n
∑

j=1

jp ≤ n−p

n
∑

j=1

jpϕp
F (j) → 0 a.s.,

which is tantamount to the conclusion. �

Lemma 5.2. Let {Xn, n ≥ 1} be a sequence of F-uniformly strong mixing

random variables satisfying
∑∞

n=1 ϕ
1/2
F (n) < ∞ a.s. If EFX1 = 0 a.s. and

EFX2
1 < ∞ a.s., then there exists a nonnegative F-measurable random variable

ξF such that for all n ≥ 1,

EF

(

n
∑

i=1

Xi

)2

≤ ξF

n
∑

i=1

EFX2
i .

Proof. By Theorem 4.1 for p = q = 2, we conclude that

EF

(

n
∑

i=1

Xi

)2

=
n
∑

i=1

EFX2
i + 2

∑

1≤i<j≤n

EFXiXj

≤
n
∑

i=1

EFX2
i + 4

∑

1≤i<j≤n

ϕ
1/2
F (j − i)

(

EFX2
i

)1/2 (
EFX2

j

)1/2

≤
n
∑

i=1

EFX2
i + 2

n−1
∑

i=1

n−i
∑

k=1

ϕ
1/2
F (k)

(

EFX2
i + EFX2

k+i

)

≤
(

1 + 4

∞
∑

k=1

ϕ
1/2
F (k)

)

n
∑

i=1

EFX2
i a.s.,

verifying the result by taking ξF = 1 + 4
∑∞

k=1 ϕ
1/2
F (k). �
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Our conditional central limit theorem stated in terms of conditional char-
acteristic functions reads as follows, whose non-conditional version is Theorem
1.5 in Ibragimov [8].

Theorem 5.3. Assume that {Xn, n ≥ 1} is a sequence of F-uniformly strong

mixing and F-stationary random variables with

(5.2)

∞
∑

n=1

ϕ
1/2
F (n) < ∞ a.s.,

and if EF |X1|2 < ∞ a.s., then

(5.3) σ2
F := EF (X1 − EFX1

)2
+ 2

∞
∑

i=2

CovF (X1, Xi) < ∞ a.s.,

(5.4) n−1EF (Sn − EFSn

)2 → σ2
F a.s.

and the series converges absolutely almost surely. Furthermore, if σF > 0
almost surely, then

(5.5) EF exp

[

it
(

Sn − EFSn

)

√
nσF

]

→ exp

(

− t2

2

)

a.s. as n → ∞

In particular,

(5.6)
Sn − EFSn√

nσF
→ N (0, 1) in distribution.

Proof. Relation (5.6) follows from (5.5) by using the dominated convergence
theorem and the continuity theorem for characteristic functions.

Noticing that
{

Xn − EFXn, n ≥ 1
}

is F -centered and F -uniformly strong
mixing with the same coefficient {ϕF (n)} in view of Proposition 3.6 (iii), with-
out loss of generality we may assume that EFXn = 0 for all n ≥ 1. Taking into
account the conditional stationarity, we need only to assume that EFX1 = 0.
By Theorem 4.1,

∞
∑

j=2

∣

∣CovF (X1, Xj)
∣

∣ ≤ 2EFX2
1

∞
∑

j=1

ϕ
1/2
F (j),

and so the series in (5.3) converges absolutely almost surely according to (5.2).
From the conditional stationarity of {Xn},

EFS2
n = nEFX2

1 + 2

n
∑

j=2

(n− j + 1)CovF (X1, Xj).

Using the convergence of
∑∞

j=1 CovF (X1, Xj) together with the Kronecker
lemma,

n−1
n
∑

j=1

jCovF (X1, Xj) → 0 a.s.,
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and we have

1

n
EFS2

n − σ2
F = 2

∞
∑

j=n+1

CovF (X1, Xj)−
2

n

n
∑

j=2

(j − 1)CovF (X1, Xj) → 0 a.s.

as n → ∞, which is tantamount to (5.4).
Next we prove (5.5). Let bn =

[

n3/4
]

and ln =
[

n1/4
]

. If rn is the largest
integer j such that (j − 1) (bn + ln) + bn < n, then

(5.7) bn ∼ n3/4, ln ∼ n1/4, rn ∼ n1/4.

Let

Unj = X(j−1)(bn+ln)+1 + · · ·+X(j−1)(bn+ln)+bn , 1 ≤ j ≤ rn

and

Vnj =

{

X(j−1)(bn+ln)+bn+1 + · · ·+Xj(bn+ln), 1 ≤ j < rn,

X(j−1)(bn+ln)+bn+1 + · · ·+Xn, j = rn,

then Sn =
∑rn

j=1 Unj +
∑rn

j=1 Vnj , that is, the sum Sn is split into alternate

blocks of length bn(the big blocks) and ln(the little blocks). We will prove
that

∑rn
j=1 Vnj is small in comparison with

∑rn
j=1 Unj but large enough that

the Unj are nearly F -independent. Note that the family {Vnj , 1 ≤ j ≤ rn} is
F -uniformly strong mixing by Proposition 3.5. It follows from the conditional
stationarity and Lemma 5.2 that

∣

∣

∣

∣

∣

EF exp

(

it
Sn√
nσF

)

− EF exp

(

it

∑rn
j=1 Unj√
nσF

)∣

∣

∣

∣

∣

≤ |t|√
nσF

EF

∣

∣

∣

∣

∣

∣

Sn −
rn
∑

j=1

Unj

∣

∣

∣

∣

∣

∣

=
|t|√
nσF

EF

∣

∣

∣

∣

∣

∣

rn
∑

j=1

Vnj

∣

∣

∣

∣

∣

∣

≤
√
2 |t|√
nσF






EF





rn−1
∑

j=1

Vnj





2

+ EFV 2
nrn







1/2

≤
√
2 |t|√
nσF

[

(rn − 1) ξFE
FV 2

n1 + EFV 2
nrn

]1/2
.

Now, by Lemma 5.2 again and (5.7),

1

n
(rn − 1) ξFE

FV 2
n1 ≤ 1

n
rnlnξ

2
FE

FX2
1 → 0 a.s.,

1

n
EFV 2

nrn
≤ 1

n
[n− (rn − 1) (bn + ln)− bn] ξFE

FX2
1
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≤ 1

n
(bn + ln) ξFE

FX2
1 → 0 a.s.

Putting these relations derived above together, we conclude that

EF exp

(

it
Sn√
nσF

)

− EF exp

(

it

∑rn
j=1 Unj√
nσF

)

→ 0 a.s.

To verify (5.5), it suffices to show that

(5.8) EF exp

(

it

∑rn
j=1 Unj√
nσF

)

→ exp

(

− t2

2

)

a.s. as n → ∞.

For this purpose, let U ′
nj , 1 ≤ j ≤ rn, be F -independent random variables

such that U ′
nj and Unj have the same distribution with respect to F . Noting

that the family {Unj/(
√
nσF ), 1 ≤ j ≤ rn} is F -uniformly strong mixing by

Propositions 3.4, 3.5 and 3.6(ii), we have
∣

∣

∣

∣

∣

EF exp

(

it

∑rn
j=1 Unj√
nσF

)

− EF exp

(

it

∑rn
j=1 U

′
nj√

nσF

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

EF exp

(

it

∑rn
j=1 Unj√
nσF

)

−
rn
∐

j=1

EF exp

(

it
Unj√
nσF

)

∣

∣

∣

∣

∣

∣

≤ 8 (rn − 1)ϕF (ln + 1)

≤ 8rnϕF (ln)

→ 0 a.s.

by using Theorem 4.6′, Lemma 5.1 and (5.7). Now
∣

∣

∣

∣

∣

EF exp

(

it

∑rn
j=1 U

′
nj√

nσF

)

− EF exp

(

it

∑rn
j=1 U

′
nj

√

rnEFU ′2
n1

)∣

∣

∣

∣

∣

≤ |t|
√

EF
(

∑rn

j=1
U ′
nj

)2
∣

∣

∣

∣

∣

1√
nσF

− 1
√

rnEFU ′2
n1

∣

∣

∣

∣

∣

≤ |t|
∣

∣

∣

∣

∣

√

rnEFU ′2
n1√

nσF
− 1

∣

∣

∣

∣

∣

= |t|
∣

∣

∣

∣

∣

√

rnEFU2
n1√

nσF
− 1

∣

∣

∣

∣

∣

,

the last term tends to 0 since

√
rnEFU2

n1√
nσF

∼
√

rnbnσ
2
F√

nσF

→ 1 by (5.4) and (5.7),

and therefore (5.8) is an immediate consequence of

EF exp

(

it

∑rn
j=1 U

′
nj

√

rnEFU ′2
n1

)

→ exp

(

− t2

2

)

a.s.,
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which follows by Theorem 8 in Prakasa Rao [14]. �
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