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AXIOMS FOR THE THEORY OF RANDOM VARIABLE

STRUCTURES: AN ELEMENTARY APPROACH

Shichang Song

Abstract. The theory of random variable structures was first studied
by Ben Yaacov in [2]. Ben Yaacov’s axiomatization of the theory of ran-
dom variable structures used an early result on the completeness theorem
for  Lukasiewicz’s [0, 1]-valued propositional logic. In this paper, we give
an elementary approach to axiomatizing the theory of random variable
structures. Only well-known results from probability theory are required
here.

1. Introduction

The study of the theory of random variable structures was initiated by Ben
Yaacov in [2]. He proved that the class of random variable structures is ele-
mentary and gave axioms for the theory of random variable structures, but his
axiomatization of the theory used an early result on the completeness theorem
for  Lukasiewicz’s [0, 1]-valued propositional logic. In this paper, we use only
well-known results from probability theory to give an elementary approach to
axiomatizing the theory of random variable structures. Our approach is built
on the axiomatization of the theory of probability algebras (e.g., see [5]).

In the rest of this section, we introduce the definitions and notations in this
paper. In Section 2, we axiomatize the theory of random variable structures.
Only basic measure theoretic probability theory is required. The main result
is Theorem 2.10.

Definitions and notations

We follow the notations in [3, Chapter 16] (see [5] for more details). Let

the signature LPr denote the set {0,1, ·∁,∩,∪, µ}, where 0 and 1 are constant

symbols, ·∁ is a unary function symbol, ∩ and ∪ are binary function symbols,
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and µ is a unary predicate symbol. Among those symbols, ·∁ and µ are 1-
Lipschitz, and ∩ and ∪ are 2-Lipschitz. Let the theory of probability algebras
Pr consist of the following axioms:

(i) boolean algebra axioms
(ii) measure axioms:

µ(1) = 1 and sup
x

sup
y

|
µ(x) + µ(y)

2
−

µ(x ∪ y) + µ(x ∩ y)

2
| = 0

(iii) supx supy

∣∣d(x, y) − µ(x△y)
∣∣ = 0, where x△y denotes the symmetric

difference: x△y = (x ∩ y∁) ∪ (x∁ ∩ y).

The theory of atomless probability algebras APr consists of axioms in Pr and
the following one:

(iv) supx infy |µ(x ∩ y) − µ(x)
2 | = 0.

Let (Ω,F , µ) be a probability space. For A1, A2 ∈ F , we write A1 ∼µ A2

if the symmetric difference A1△A2 has measure zero. Clearly we see that
∼µ is an equivalence relation. Let F̂ denote the collection of equivalence

classes of F modulo ∼µ. We call elements in F̂ events. Naturally, F̂ is a
σ-algebra and µ induces a well-defined countably additive probability measure
on F̂ . We call F̂ the measure algebra associated to (Ω,F , µ). The LPr-structure

M = (F̂ ,0,1, ·∁,∩,∪, µ) is called a probability algebra. It is called an atom-

less probability algebra if the probability space (Ω,F , µ) is atomless; that is,
for every F ∈ F with µ(F ) > 0 there is G ∈ F with G ⊆ F such that
0 < µ(G) < µ(F ).

Let (Ω,F , µ) be a probability space. Consider the set of all F -measurable
functions f : Ω → [0, 1]. Define the L1-metric d1(f, g) :=

∫
Ω
|f − g|dµ for all

F -measurable f, g : Ω → [0, 1]. The set of such functions together with d1 forms
a pseudometric space, which is denoted by L1

(
(Ω,F , µ), [0, 1]

)
, or simply by

L1(µ, [0, 1]). For all f, g ∈ L1(µ, [0, 1]), we say that f is equal to g almost

surely, and write f =a.s. g (or f = g a.s.), if f is equal to g up to a null set.
We denote the equivalence class of f under =a.s. by [f ]a.s.. For each F ∈ F ,
let χF denote the characteristic function of F , and let 1F denote [χF ]a.s.. Let
N be {f |

∫
Ω
|f |dµ = 0} = {f | f = 0 a.s.}. Then the quotient space

L1
(
(Ω,F , µ), [0, 1]

)
= L1

(
(Ω,F , µ), [0, 1]

)
/N

is a metric space with the L1-metric d1, called an L1-space. It is well known that
the space L1

(
(Ω,F , µ), [0, 1]

)
with the L1-metric d1 is a complete metric space.

When the underlying probability space is clear, L1
(
(Ω,F , µ), [0, 1]

)
is often

abbreviated as L1(µ, [0, 1]), or just L1(F , [0, 1]) when the underlying set Ω and
the probability measure µ are clear. We write L1

(
(Ω,F , µ), {0, 1}

)
for the set of

equivalence classes of characteristic functions in the space L1
(
(Ω,F , µ), [0, 1]

)
.

Let D denote the dyadic numbers in [0, 1]. We write L1
(
(Ω,F , µ),D

)
for the

set of equivalence classes of D-valued simple functions in L1
(
(Ω,F , µ), [0, 1]

)
.
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Clearly,

L1
(
(Ω,F , µ), {0, 1}

)
⊆ L1

(
(Ω,F , µ),D

)
⊆ L1

(
(Ω,F , µ), [0, 1]

)
.

Moreover, we have that L1
(
(Ω,F , µ), {0, 1}

)
is closed in L1

(
(Ω,F , µ), [0, 1]

)
,

and L1
(
(Ω,F , µ),D

)
is dense in L1

(
(Ω,F , µ), [0, 1]

)
. Let A be a subset of

L1
(
(Ω,F , µ), [0, 1]

)
. Let σ(A) ⊆ F denote the σ-subalgebra of F -measurable

sets generated by the random variables in the equivalence classes in A. We call
σ(A) the σ-algebra generated by A.

The elements in L1
(
(Ω,F , µ), [0, 1]

)
are not F -measurable functions, but

equivalence classes of them. In probability theory, most useful functions, re-
lations, and maps (such as continuous functions, integrals, inequality rela-
tions, conditional expectations) on measurable functions are well-defined on
the equivalence classes of those functions. Therefore, it causes no harm (and
is more readable) to denote an equivalence class in L1

(
(Ω,F , µ), [0, 1]

)
by a

member of the class.
A ([0, 1]-valued) random variable structure is based on a set of the form

L1
(
(Ω,F , µ), [0, 1]

)
, where (Ω,F , µ) is a probability space. It is called an atom-

less random variable structure, if its underlying probability space is atomless.
We use the setting of continuous logic [3] ([4] is also a good reference) to discuss
the model theory of random variable structures. Here we consider the signa-
ture LRV = {0,¬,−· , 1

2 , I}, where 0 is a constant symbol, −· is a binary function

symbol, ¬ and 1
2 are unary function symbols, and I is a unary predicate sym-

bol. Recall that on Mn, we take the maximum metric. Among those symbols,
¬ is 1-Lipschitz, 1

2 is 1
2 -Lipschitz, −· is 2-Lipschitz and I is 1-Lipschitz.

We interpret the symbols of LRV in M as follows:

0M(ω) = 0 for all ω ∈ Ω
¬M(f) = 1 − f for all f ∈ M
(−· )M(f, g) = f −· g = max(f − g, 0) for all f, g ∈ M
(12 )Mf = f/2 for all f ∈ M

IM(f) =
∫
Ω
fdµ for all f ∈ M

dM(f, g) =
∫
Ω |f − g|dµ for all f, g ∈ M

Then M =
(
L1

(
(Ω,F , µ), [0, 1]

)
,0,¬,−· , 1

2 , I, d
)

is an LRV-structure. Note that

the LRV-prestructure associated to M is
(
L1

(
(Ω,F , µ), [0, 1]

)
,0,¬,−· , 1

2 , I, d
)

.

Let RV denote the class of all random variable structures as LRV-structures
and let ARV denote the class of all atomless random variable structures as
LRV-structures. In Section 2, we show that the classes RV and ARV are
elementary.

In the signature LRV, we also use the following symbols as shorthand for
expressions built from symbols in LRV:

1 = ¬0

x∔ y = ¬(¬x −· y)
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x ∧ y = x−· (x−· y)

x ∨ y = ¬(¬x ∧ ¬y)
x

2
=

1

2
x

By induction on n, we define

1

2n
x =

x

2n
=

1

2

x

2n−1
for all n ∈ N,

x1 ∔ x2 ∔ · · ·∔ xn = (x1 ∔ x2 ∔ · · ·∔ xn−1) ∔ xn,

x1 ∧ x2 ∧ · · · ∧ xn = (x1 ∧ x2 ∧ · · · ∧ xn−1) ∧ xn,

and
x1 ∨ x2 ∨ · · · ∨ xn = (x1 ∨ x2 ∨ · · · ∨ xn−1) ∨ xn.

Let D denote the set of dyadic numbers in [0,1]. Consider r ∈ D. Suppose
r = m

2n , where m,n ∈ N, 0 < m < 2n, and 2 ∤ m. We define

rx =
x

2n
∔

x

2n
∔ · · ·∔

x

2n︸ ︷︷ ︸
m times

.

When r = 0 or 1, we write 0x for 0 and 1x for x.

2. Axioms for RV

In this section, we give axioms for the theory of (atomless) random variable
structures. Only basic measure theoretic probability theory is assumed. The
main result is Theorem 2.10.

The theory RV consists of the following axioms:

(E1): supx infy max
(
I(y ∧ ¬y),

∣∣I(x ∧ ¬x) − d(x, y)
∣∣
)

= 0

(E2): supx

∣∣∣I(x ∧ ¬x) − infy
(
I(y ∧ ¬y) ∔ d(x, y)

)∣∣∣ = 0

(APPR): for all n ∈ N,

sup
x

inf
y1,...,y2n

(
d(x,

1

2n
y1 ∔

1

2n
y2 ∔ · · ·∔

1

2n
y2n) ∔ max

1≤i≤2n
I(yi ∧ ¬yi)

)
−·

1

2n
= 0

(ADD): supx supy
1
2

∣∣I(x) −
(
I(x−· y) + I(y ∧ x)

)∣∣ = 0
(C): supx I(0−· x) = 0; supx d(x−· 0, x) = 0; |I(1) − 1| = 0
(H1): supx supy d

(
x−· y
2 , x

2 −· y
2

)
= 0

(H2): supx supy d((x2 ∔
y
2 ) −· x

2 ,
y
2 ) = 0; supx d(x2 ∔ x

2 , x) = 0

(H3): supx supy d
(
x
2 ∨ y

2 ,
1
2 (x ∨ y)

)
= 0

(H4): supx supy I
(
(12x ∧ y) −· (x ∧ y)

)
= 0

(H5): supx supy
1
2 (x2 ∔

y
2 ) = x

4 ∔
y
4

(MET): supx supy
1
2

∣∣d(x, y) −
(
I(x −· y) + I(y −· x)

)∣∣ = 0
(N): d(¬1,0) = 0; supx supy d(x−· y,¬y −· ¬x) = 0

(P1): supx1
supx2

supy1
supy2

d(x1 ∔ y1, x2 ∔ y2) −·
(
d(x1, x2) ∔ d(y1, y2)

)
= 0

(P2): supx supy

(
d(x∔ y, x ∨ y) −· max

(
I(x ∧ ¬x), I(y ∧ ¬y)

))
= 0
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(P3): supx supy supz d
(
(x∔ y) ∔ z, x∔ (y ∔ z)

)
= 0

(S1): supx supy supz d
(
(z ∨ y) −· x, (z −· x) ∨ y

)
−· I(x ∧ y) = 0

(S2): supx supy supz I
((

(x∔ y) ∧ z
)
−·
(
(x ∧ z) ∔ (y ∧ z)

))
= 0

(L1): supx supy d(x ∨ y, y ∨ x) = 0; supx supy d(x ∧ y, y ∧ x) = 0

(L2): supx supy supz d
(
x ∨ (y ∨ z), (x ∨ y) ∨ z

)
= 0

(L3): supx supy supz d
(
x ∧ (y ∧ z), (x ∧ y) ∧ z

)
= 0

(L4): supx supy d
(
x ∨ (x ∧ y), x

)
= 0; supx supy d

(
x ∧ (x ∨ y), x

)
= 0

(L5): supx supy supz d
(
x ∨ (y ∧ z), (x ∨ y) ∧ (x ∨ z)

)
= 0

(L6): supx supy supz d
(
x ∧ (y ∨ z), (x ∧ y) ∨ (x ∧ z)

)
= 0

Axioms (L1) to (L6) are the axioms for distributive lattices.
Let ARV be RV together with the following axiom:

(NA): supx infy
(
max(I(y ∧ ¬y),

∣∣I(y ∧ x) − I(x)
2

∣∣)
)

= 0

Proposition 2.1. Every random variable structure M = (M,0,¬,−· , 1
2 , I, d)

is a model of RV. Further, if M is an atomless random variable structure, then

it is a model of ARV.

Proof. Assume M = L1
(
(Ω,F , µ), [0, 1]

)
for some probability space (Ω,F , µ).

By [3, Theorem 3.7], it suffices to consider axioms in the LRV-prestructure
M0 = L1

(
(Ω,F , µ), [0, 1]

)
. Note that f ∧ g = min(f, g) and f ∨ g = max(f, g)

for all f, g ∈ M0. Most axioms are easy to verify and some of them are just
arithmetic. We will check Axioms (E1), (E2), (APPR), and leave the rest to
the readers.

(E1) and (E2): We consider

X = {f ∈ M0 | f is a characteristic function}.

For all f ∈ M0, we have

|f(ω) − χ{f≥ 1

2
}(ω)| ≤ |f(ω) − χA(ω)| for all A ∈ F and all ω ∈ Ω,

whereby dist(f,X ) = d(f, χ{f≥ 1

2
}). Also we note that

d(f, χ{f≥ 1

2
}) =

∫

Ω

|f − χ{f≥ 1

2
}|dµ =

∫

Ω

|f ∧ (1 − f)|dµ = IM0(f ∧ ¬f),

whereby dist(f,X ) = IM(f ∧ ¬f). Then to verify Axioms (E1) and (E2), we
need only check that

sup
x

inf
y

max
(
dist(y,X ),

∣∣dist(x,X ) − d(x, y)
∣∣) = 0

and

sup
x

∣∣dist(x,X ) − inf
y

(
dist(y,X ) ∔ d(x, y)

)∣∣ = 0.

Both are clear here.
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(APPR): This axiom is an approximation result from real analysis. For all
n ∈ N and f ∈ M0, let gi = χ{f≥ i−1

2n
}, for every 1 ≤ i ≤ 2n. Then

1

2n
g1 ∔ · · ·∔

1

2n
g2n =

2n∑

i=1

1

2n
gi

=
1

2n
χ{0≤f< 1

2n
} +

2

2n
χ{ 1

2n
≤f< 2

2n
} + · · · +

2n

2n
χ{ 2n−1

2n
≤f}.

Thus

d
(
f,

1

2n
g1 ∔ · · ·∔

1

2n
g2n

)
= d

(
f,

2n∑

i=1

i

2n
χ{ i−1

2n
≤f< i

2n
}

)

=

∫

Ω

∣∣f −
2n∑

i=1

i

2n
χ{ i−1

2n
≤f< i

2n
}

∣∣dµ

≤

∫

Ω

2n∑

i=1

1

2n
χ{ i−1

2n
<f≤ i

2n
}dµ =

1

2n
µ(Ω) =

1

2n
.

Also note that I(gi ∧ ¬gi) = 0 for every 1 ≤ i ≤ 2n. Consequently, (APPR) is
true in M.

When (Ω,F , µ) is atomless, clearly
(
L1

(
(Ω,F , µ), [0, 1]

)
,0,¬,−· , 1

2 , I, d
)

sat-

isfies (NA). Hence it is a model of ARV. �

Indeed, RV also axiomatizes the class RV (see Theorem 2.10) and then ARV

axiomatizes the class ARV (see Corollary 2.11), which are the main results from
this section. Toward the proof of Theorem 2.10, we prove the following results
about models of RV. In the following arguments, we interpret symbols of LRV

in a given model M of RV without putting M explicitly into the notations, for
easier readability.

Fact 2.2. Let M be a model of RV. For all x, y ∈ M , we have the following

properties:

(i) I(x) = 0 if and only if x = 0.

(ii) 0−· x = 0 and x−· 1 = 0.

(iii) ¬x = 1−· x and ¬¬x = x.
(iv) x ∧ 0 = 0 and x ∧ 1 = x.
(v) x ∨ 0 = x and x ∨ 1 = 1.

(vi) x−· x = 0.

(vii) I(¬x) = 1 − I(x).

(viii) I(x)
2 = I(x2 ).

(ix) x∔ y = y ∔ x.
(x) d(x2 ,

y
2 ) = 1

2d(x, y).
(xi) 1∔ x = x∔ 1 = 1 and 0∔ x = x∔ 0 = x.

(xii) If x
2 ∔

y
2 = 1

2 , then x = ¬y.
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Proof. (i) By (C), we have 0−· 0 = 0 and 0 = I(0−· 0) = I(0). For the converse,
suppose I(x) = 0. Using (MET) and (C), we have

d(x,0) = I(x−· 0) + I(0−· x) = I(x) + I(0) = I(x) = 0,

and thus x = 0.
(ii) By (i) and (C), we have 0−· x = 0 for all x. In particular, 0−· ¬x = 0,

so using (N), we have x−· 1 = ¬1−· ¬x = 0−· ¬x = 0.
(iii) By (N) and (C), we have 1−· x = ¬x−· ¬1 = ¬x−· 0 = ¬x. Using (L1),

(ii) and (C), we get ¬¬x = 1−· (1−· x) = 1 ∧ x = x ∧ 1 = x−· (x−· 1) = x.
(iv) By (L1) and (ii), we have x ∧ 0 = 0 ∧ x = 0−· (0−· x) = 0. By (ii) and

(C), we get x ∧ 1 = x−· (x−· 1) = x−· 0 = x.
(v) Using (iv) and (iii), we have

x ∨ 0 = ¬(¬x ∧ ¬0) = ¬(¬x ∧ 1) = ¬(¬x) = x.

Using (N) and (iv), we have x ∨ 1 = ¬(¬x ∧ ¬1) = ¬(¬x ∧ 0) = ¬0 = 1.
(vi) Setting x = y in (MET), we have I(x −· x) + I(x −· x) = 0; this yields

x−· x = 0 using (i).
(vii) By (C), (ADD), (iii), and (iv), we have

1 = I(1) = I(1−· x) + I(x ∧ 1) = I(¬x) + I(x),

whereby I(¬x) = 1 − I(x).
(viii) By (H2), we have x−· x

2 = (x2 ∔
x
2 )−· x

2 = x
2 . Then by (ADD) and (L1),

we have

I(x) = I(x−·
x

2
) + I(

x

2
∧ x) = I(

x

2
) + I(x ∧

x

2
) = I(

x

2
) + I

(
x−· (x−·

x

2
)
)

= I(
x

2
) + I(

x

2
).

(ix) To show x∔ y = y∔x, it suffices to show ¬(¬x−· y) = ¬(¬y−· x), which
follows from (N) and (iii).

(x) By (MET), (H1), and (viii), we have

d(
x

2
,
y

2
) = I(

x

2
−·

y

2
) + I(

y

2
−·

x

2
) = I(

x−· y

2
) + I(

y −· x

2
)

=
I(x −· y)

2
+

I(y −· x)

2
=

d(x, y)

2
.

(xi) By (N) and (ii), we have 1∔x = ¬(¬1−· x) = ¬(0−· x) = ¬0 = 1. Then
by (ix), we have x∔ 1 = 1∔ x = 1. By (iii), 0∔ x = ¬(¬0−· x) = ¬(1−· x) =
¬¬x = x. By (ix), we have x∔ 0 = 0∔ x = x.

(xii) By (H2), we have 1

2 −· x
2 = (x2 ∔

y
2 ) −· x

2 = y
2 . Then by (H1), we have

1−· x = y, whereby x = ¬y by (iii). �

Proposition 2.3. Let M be a model of RV. Let D = {x ∈ M | I(x∧¬x)} = 0.

For all x, y ∈ D, define x∁ := ¬x, x∩y := x∧y, x∪y := x∨y, and µ(x) := I(x).

Then D is a uniformly definable set in M and (D,0,1, ·∁,∩,∪, µ) is a model of
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Pr. Moreover, if M is of the form L1
(
(Ω,F , µ), [0, 1]

)
for the probability space

(Ω,F , µ), then D is L1
(
(Ω,F , µ), {0, 1}

)
.

Proof. Let M be a model of RV and let D = {y ∈ M | I(y ∧ ¬y) = 0}. By
Fact 2.2(i), we know D = {y ∈ M | y ∧ ¬y = 0}. By [3, Theorem 9.12],
(E1), and (E2), we know that I(x∧¬x) = dist(x,D). Hence, D is a uniformly
definable set in M ; that is, the defining formula for D does not depend on M .

First, we want to show that D is closed under ¬,∧,∨ and also 0,1 ∈ D.
For all x, y ∈ D, we have x ∧ ¬x = y ∧ ¬y = 0. Since ¬¬x = x and x ∧ ¬x =
¬x ∧ x, we get ¬x ∧ ¬(¬x) = 0, whence ¬x ∈ D. To show x ∧ y ∈ D, it
suffices to show (x ∧ y) ∧ ¬(x ∧ y) = (x ∧ y) ∧ (¬x ∨ ¬y) = 0. By the fact
that ∨ and ∧ satisfy the distributive lattice axioms, we need only show that(
(x ∧ y) ∧ ¬x

)
∨
(
(x ∧ y) ∧ ¬y

)
= 0, which is true since x ∧ ¬x = y ∧ ¬y = 0.

Then since x ∨ y = ¬(¬x ∧ ¬y), we know x ∨ y ∈ D as well. By Fact 2.2(iv),
we know 0 ∧ ¬0 = 0, and thus 0 ∈ D. Hence, 1 = ¬0 ∈ D.

Second, for all x, y ∈ D, define x ∩ y := x ∧ y, x ∪ y := x ∨ y, and x∁ = ¬x.
We show that (D,0,1, ·∁,∩,∪, µ) is a model of Pr. For all x ∈ D, we have
x ∧ ¬x = 0, and then ¬(x ∧ ¬x) = ¬0 = 1. Then by Fact 2.2(iii) and (L1), we
have 1 = ¬(x ∧ ¬x) = ¬x ∨ ¬¬x = ¬x ∨ x = x ∨ ¬x. Because ∧,∨ also satisfy

the axioms for distributive lattices, we see that (D,0,1, ·∁,∪,∩) satisfies all
boolean algebra axioms in Pr.

For all x ∈ D, define µ(x) := I(x). By Fact 2.2(i) and (vii), we have
µ(0) = 0 and µ(1) = 1. For all x, y ∈ D, we have I(x ∨ y) = I

(
¬(¬x ∧ ¬y)

)
=

1 − I(¬x ∧ ¬y), by Fact 2.2(vii). By (ADD) and (N), we have

I(¬y) = I(¬y −· ¬x) + I(¬x ∧ ¬y) = I(x−· y) + I(¬x ∧ ¬y),

and thus I(¬x ∧ ¬y) = I(¬y) − I(x −· y). Hence,

I(x ∨ y) = 1 − I(¬x ∧ ¬y) = 1 − (I(¬y) − I(x−· y)),

whence I(x ∨ y) = I(y) + I(x−· y) by Fact 2.2(vii). By (ADD), we have

I(x) = I(x−· y) + I(y ∧ x).

Then by eliminating the term I(x−· y), we get I(x∨y)+ I(y∧x) = I(x)+ I(y),
whence I(x ∪ y) + I(x ∩ y) = I(x) + I(y). Therefore µ(x ∪ y) + µ(x ∩ y) =

µ(x) + µ(y). Consequently, (D,0,1, ·∁,∩,∪, µ) satisfies the measure axioms in
Pr.

Next, for all x, y ∈ D, by (P2) we know d(x∔ y, x∨y) = 0, and thus x∔ y =
x∨y. Since (x∔y) = ¬(¬x−· y), by Fact 2.2(iii) we have x−· y = ¬(¬x∔y). Then
by Fact 2.2(iii), we have x−· y = ¬(¬x∔ y) = ¬(¬x ∨ y) = ¬¬x∧¬y = x∧¬y.
By (MET), we have

d(x, y) = I(x −· y) + I(y −· x) = I(x ∧ ¬y) + I(y ∧ ¬x) = µ(x ∩ y∁) + µ(y ∪ x∁)

= µ(x△y).
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Hence, (D,0,1, ·∁,∩,∪, µ) satisfies Axiom (iii) in Pr. Since d is a complete
metric on M and D is a zeroset (thus it is closed), the metric d is complete on
D.

Since x∁ = ¬x for all x ∈ D and ¬ is 1-Lipschitz, we get ·∁ is 1-Lipschitz.
By (P2) and Fact 2.2(iii), for all x, y ∈ D, we have

x∩y = x∧y = ¬¬(¬¬x∧¬¬y) = ¬(¬x∨¬y) = ¬(¬x∔¬y) = ¬¬x−· ¬y = x−· ¬y.

Since ¬ is 1-Lipschitz and −· is 2-Lipschitz, we have that ∩ is 2-Lipschitz.
Since x ∪ y = (x ∩ y)∁ for all x, y ∈ D, we know that ∪ is 2-Lipschitz. Since
µ(x) = I(x) for all x ∈ D and I is 1-Lipschitz, we know that µ is 1-Lipschitz.

Hence, (D,0,¬, ·∁,∩,∪, µ) is an LPr-structure. Therefore, (D,0,¬, ·∁,∩,∪, µ)
is a model of Pr.

Suppose M is of the form L1
(
(Ω,F , µ), [0, 1]

)
, where (Ω,F , µ) is a probability

space. Then for every f ∈ L1
(
(Ω,F , µ), {0, 1}

)
, there is A ∈ F , such that

f = [χA]a.s.. Thus f ∧ ¬f = 0, whereby f ∈ D. For the converse, take x ∈ D
with I(x ∧ ¬x) = 0. Suppose x = [f ]a.s. for an F -measurable f : Ω → [0, 1].
Then

∫
Ω

min(f, 1−f)dµ = 0, whereby f is a.s. a characteristic function. Hence

x ∈ L1
(
(Ω,F , µ), {0, 1}

)
, and thus D = L1

(
(Ω,F , µ), {0, 1}

)
. �

The following lemmas are used in the proofs of Proposition 2.7 and Theo-
rem 2.10.

Lemma 2.4. Let M |= RV. Then:

(i) For all m,n ∈ N and all x1, . . . , xn ∈ M , we have

1

2
(
x1

2m
∔ · · ·∔

xn

2m
) =

x1

2m+1
∔ · · ·∔

xn

2m+1
.

(ii) For all m,n ∈ N and all x1, . . . , xm, y1, . . . , yn ∈ M , we have

(x1 ∔ · · ·∔ xm) ∔ (y1 ∔ · · ·∔ yn) = x1 ∔ · · ·∔ xm ∔ y1 ∔ · · ·∔ yn.

(iii) For all n ∈ N and all x ∈ M , we have

x

2n
∔ · · ·∔

x

2n︸ ︷︷ ︸
2n times

= x.

(iv) For all m,n ∈ N and all x1, . . . , xn ∈ M , we have

1

2m
(x1 ∨ · · · ∨ xn) =

x1

2m
∨ · · · ∨

xn

2m
.

Proof. (i): Use induction on n and (H5).
(ii): Use induction on n and (P3).
(iii): Use induction on n, (ii), and (H2).
(iv): Use induction on n and (H3). �

Lemma 2.5. Let M |= RV and let x, y, z ∈ M be such that x ∧ y = y ∧ z =
z ∧ x = 0. Then for all n ∈ N, all x0, x1, . . . , xn ∈ M such that xi ∧ xj = 0 if

i 6= j, and all r, s, t, r0, r1, . . . , rn ∈ D, we have:
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(i) rx ∧ sy = 0.

(ii) rx−· sy = rx.
(iii) rx∔ sy = rx ∨ sy.
(iv) (r0x0 ∔ · · ·∔ rn−1xn−1) ∧ rnxn = 0.

(v) r1x1 ∔ · · ·∔ rnxn = r1x1 ∨ · · · ∨ rnxn.
(vi) I(r1x1 ∔ · · ·∔ rnxn) = I(r1x1) + · · · + I(rnxn).

Proof. We leave the proofs of (i), (ii), and (iii) to the readers.
(iv): We use induction on n.
(v): We use induction on n.
(vi): We use induction on n. �

Lemma 2.6. Let M |= RV and let D = {x ∈ M | I(x ∧ ¬x) = 0}. Then for

all r, s ∈ D, all x ∈ M , and all a, a1, . . . , ak ∈ D, where k ∈ N and ai ∧ aj = 0

if i 6= j, we have

(i) rx
2 = r

2x.
(ii) ra∔ sa = (r ∔ s)a.
(iii) ¬(ra) = (¬r)a ∔ ¬a.
(iv) ra−· sa = (r −· s)a.
(v) r(a1 ∔ · · ·∔ ak) = ra1 ∔ · · ·∔ rak.

(vi) ra ∧ sa = (r ∧ s)a.
(vii) I(ra) = rI(a), and thus ra = 0 if and only if r = 0 or a = 0.

Proof. We assume familiarity with Fact 2.2. Suppose r or s is neither 0 nor 1,
otherwise this is trivial.

(i): This follows from (H5) and Lemma 2.4(i).
(ii): Suppose r = m1

2n1
, s = m2

2n2
, where n1, n2 ∈ N, 0 < m1 < 2n1 , 0 < m2 <

2n2 , and n1 ≤ n2. By Lemma 2.4(iii), we have

a

2n1

=
a

2n2

∔ · · ·∔
a

2n2︸ ︷︷ ︸
2n2−n1 times

.

Then by Lemma 2.4(ii) and induction, we have ra =
a

2n2

∔ · · ·∔
a

2n2︸ ︷︷ ︸
m12n2−n1

, and thus

ra∔ sa =
a

2n2

∔ · · ·∔
a

2n2︸ ︷︷ ︸
m12n2−n1+m2

. Suppose r ∔ s < 1. If 2 ∤ m12n2−n1 + m2, then

a

2n2

∔ · · ·∔
a

2n2︸ ︷︷ ︸
m12n2−n1+m2

=
m12n2−n1 + m2

2n2

a = (r ∔ s)a.
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Otherwise, say m12
n2−n1+m2

2n2
= m3

2n3
, where n3 ∈ N and 0 < m3 < 2n3 . Then by

Lemma 2.4(ii, iii) and induction, we have

a

2n2

∔ · · ·∔
a

2n2︸ ︷︷ ︸
m12n2−n1+m2

=
a

2n3

∔ · · ·∔
a

2n3︸ ︷︷ ︸
m3 times

= (r ∔ s)a.

Hence ra∔ sa = (r ∔ s)a if r ∔ s < 1.
Suppose r ∔ s ≥ 1. By Lemma 2.4(ii, iii) and induction, it suffices to prove

a∔ ta = a for all t ∈ D, which follows from

a∔ ta = ¬(¬a −· ta) = ¬((0 ∨ ¬a) −· ta) = ¬((0 −· ta) ∨ ¬a) = ¬(¬a) = a.

(iii): Since a ∈ D, by Proposition 2.3 we have a ∧ ¬a = 0 and a ∨ ¬a = 1.
It is easy to verify that

ra

2
∔

(¬r)a ∔ ¬a

2
=

1

2
(a ∨ ¬a) =

1

2
.

Then by Fact 2.2(xii), we have ¬(ra) = (¬r)a ∔ ¬a.
(iv): Note that ¬(t1 −· t2) = ¬t1 ∔ t2 for all t1, t2 ∈ [0, 1]. Then by (iii), (ii),

(P3), and Fact 2.2, we have

¬
(
(r −· s)a

)
= ((¬r)a ∔ sa) ∔ ¬a = ¬(ra −· sa).

Hence, ra−· sa = (r −· s)a.
(v): Suppose r = m

2n , where n ∈ N, 0 < m < 2n, and 2 ∤ m. Then by
Lemma 2.5(v), Lemma 2.4(iv), (P3), Fact 2.2(ix), and induction, we have

r(a1 ∔ · · ·∔ ak) = ra1 ∔ · · ·∔ rak.

(vi): Since ra ∧ sa = ra−· (ra −· sa), this follows from (iv).
(vii): Suppose r = m

2n , where m,n ∈ N, 0 < m < 2n, and 2 ∤ m.

Using induction on k, we have that I( k
2n a) = k

2n I(a) for all 1 ≤ k ≤ 2n, and
thus I(ra) = rI(a). �

Proposition 2.7. Let M be a model of RV and let D = {x ∈ M | x∧¬x = 0}.
Let M0 ⊆ M be the smallest LRV-prestructure containing D. Then M0 is the

set {r1a1 ∔ · · · ∔ rkak | k ∈ N, r1, . . . , rk ∈ D, a1, . . . , ak ∈ D, and ai ∧ aj =
0 if i 6= j}. Moreover, every nonzero element in M0 has a unique decomposition

r1a1 ∔ · · ·∔ rkak, where

(1) k ∈ N;
(2) r1, . . . , rk ∈ D with 0 < r1 < · · · < rk;
(3) a1, . . . , ak ∈ D such that ai 6= 0 for each i, and ai ∧ aj = 0 whenever

i 6= j.

Proof. By Proposition 2.3, (D,0,1,¬,∧,∨) is a boolean algebra. Let S denote
the set {r1a1 ∔ · · ·∔ rkak | k ∈ N, r1, . . . , rk ∈ D, a1, . . . , ak ∈ D, and ai ∧ aj =
0 if i 6= j}. Clearly, S ⊆ M0. We will show that (S,0,¬,−· , 1

2 , I, d) is an LRV-
prestructure. Taking k = 1, r1 = 0, and a1 = 0 in the definition of membership
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shows that 0 ∈ S. By Fact 2.2(iii), for all x, y ∈ M we have x−· y = ¬(¬x∔ y).
Hence, we need only show that S is closed under ¬,∔, and 1

2 .
Take x = r1a1 ∔ · · · ∔ rkak ∈ S, where r1, . . . , rk ∈ D, a1, . . . , ak ∈ D, and

ai ∧ aj = 0 if i 6= j. By Lemma 2.5(v), we have x = r1a1 ∨ · · · ∨ rkak. Then by
Lemma 2.4(iv), Lemma 2.6(i), and Lemma 2.5(v), we have

x

2
=

r1a1
2

∨ · · · ∨
rkak

2
=

r1
2
a1 ∨ · · · ∨

rk
2
ak =

r1
2
a1 ∔ · · ·∔

rk
2
ak ∈ S.

Hence, S is closed under 1
2 . Let y = (¬r1)a1 ∔ · · ·∔ (¬rk)ak ∔¬(a1 ∨ · · · ∨ ak).

Because D is a boolean algebra and ai ∧ aj = 0 if i 6= j, we know y ∈ S. We
will show y = ¬x. Similar to the calculation of x

2 , we have y
2 = ¬r1

2 a1 ∔ · · ·∔
¬rk
2 ak ∔

¬(a1∨···∨ak)
2 . Then by (P3), Fact 2.2(ix), induction, Lemma 2.6(ii),

Lemma 2.5(v), Lemma 2.4(iv), and the fact that (D,0,1,¬,∧,∨) is a boolean
algebra, we have

x

2
∔

y

2
= (

r1
2
a1 ∔ · · ·∔

rk
2
ak) ∔ (

¬r1
2

a1 ∔ · · ·∔
¬rk

2
ak ∔

¬(a1 ∨ · · · ∨ ak)

2
)

= (
r1
2

∔
¬r1
2

)a1 ∔ · · ·∔ (
rk
2

∔
¬rk

2
)ak ∔

¬(a1 ∨ · · · ∨ ak)

2

=
1

2
a1 ∔ · · ·∔

1

2
ak ∔

¬(a1 ∨ · · · ∨ ak)

2

=
1

2
(a1 ∨ · · · ∨ ak ∨ ¬(a1 ∨ · · · ∨ ak)) =

1

2
1 =

1

2
.

Hence by Fact 2.2(xii), we have ¬x = y ∈ S. That is, S is closed under ¬.
Take x = r1a1 ∔ · · · ∔ rkak and y = s1b1 ∔ · · ·∔ slbl ∈ S, where r1, . . . , rk,

s1, . . . , sl ∈ D, a1, . . . , ak, b1, . . . , bl ∈ D, ai ∧ ai′ = 0 if 1 ≤ i 6= i′ ≤ k,
and bj ∧ bj′ = 0 if 1 ≤ j 6= j′ ≤ l. Let a0 be ¬(a1 ∨ · · · ∨ ak) and let
b0 be ¬(b1 ∨ · · · ∨ bl). Since (D,0,1,¬,∧,∨) is a boolean algebra, we have
that {a0, . . . , ak} and {b0, . . . , bl} are two partitions of 1. Let {c1, . . . , cm} is
the partition generated by partitions {a0, . . . , ak} and {b0, . . . , bl}. Then by
Lemma 2.6(v), (P3), Fact 2.2(ix), and induction, we may assume that x =
r′1c1 ∔ · · ·∔ r′mcm and y = s′1c1 ∔ · · ·∔ s′mcm, where r′1, . . . , r

′
m, s′1, . . . , s

′
m ∈ D

(could be 0), and {c1, . . . , cm} is a partition of 1. Then by Lemma 2.6, we
have x ∔ y = (r′1 ∔ s′1)c1 ∔ · · ·∔ (r′m ∔ s′m)cm ∈ S. Thus S is closed under ∔.
Therefore, S is an LRV-prestructure, and thus S ⊇ M0. Hence, S = M0, the
smallest LRV-prestructure containing D in M .

Consider a nonzero element x in M0. Suppose x is of the form x = t1c1 ∔
· · ·∔tkck, where t1, . . . , tk ∈ D, c1, . . . , ck ∈ D, and ci∧cj = 0 if i 6= j. Suppose
k is the smallest integer for such decomposition. By (P3), Fact 2.2(ix), and
induction, we may reorder those terms such that x = r1a1 ∔ · · ·∔ rkak, where
r1 ≤ r2 ≤ · · · ≤ rk ∈ D and a1, . . . , ak ∈ D, and ai ∧ aj = 0 if i 6= j. By the
fact that k is chosen to be smallest, we have 0 < r1 < · · · < rk and ai 6= 0

for each 1 ≤ i ≤ k. Then a standard manipulation of lattices yields that this
decomposition is unique. We leave it to the readers. �
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Proposition 2.8. Let M be a model of RV and let D = {x ∈ M | x∧¬x = 0}.
Let M0 ⊆ M be the smallest LRV-prestructure containing D. Then M0 is the

set {r1a1 ∔ · · · ∔ rnan | n ∈ N, r1, . . . , rn ∈ D, a1, . . . , an ∈ D, and ai ∧ aj =
0 if i 6= j}. Moreover, every LPr-isomorphism φ : D → L1

(
(Ω,F , µ), {0, 1}

)
,

where (Ω,F , µ) is a probability space, will be uniquely extended to an LRV-

embedding

Φ: M0 → L1
(
(Ω,F , µ),D

)

which is defined by Φ(r1a1∔ · · ·∔rnan) = r1φ(a1)∔ · · ·∔rnφ(an), where n ∈ N,
ri ∈ D and ai ∈ D for all 1 ≤ i ≤ n, and ai ∧ aj = 0 whenever i 6= j.

Proof. Suppose φ can be extended to an LRV-embedding

Φ: M0 → L1
(
(Ω,F , µ),D

)
.

Then Φ(r1a1∔ · · ·∔ rnan) = r1Φ(a1)∔ · · ·∔ rnΦ(an), where n ∈ N, ri ∈ D and
ai ∈ D for all 1 ≤ i ≤ n, and ai ∧ aj = 0 for all 1 ≤ i 6= j ≤ n. Since Φ is an
extension of φ, we have Φ(r1a1 ∔ · · ·∔ rnan) = r1φ(a1)∔ · · ·∔ rnφ(an). Hence
such an extension Φ is uniquely determined by φ.

Let D = {x ∈ M | I(x ∧ ¬x)} = 0. By Proposition 2.3, we know that the

LPr-structure (D,0,¬, ·∁,∩,∪, µ) is a model of Pr. By [5, Theorem 5.2], there is
a probability space (Ω,F , µ) such that D as an LPr-structure is isomorphic to

F̂ . Let N denote the LRV-structure
(
L1((Ω,F , µ), [0, 1]),0,¬,−· , 1

2 , I, d
)
. By

Proposition 2.1, we have N |= RV. Let X denote L1((Ω,F , µ), {0, 1}). By

Proposition 2.3, we have (X , 0, 1,¬,∧,∨, µ̄) |= Pr and it is isomorphic to F̂ .
Hence, D is LPr-isomorphic to X . We call this isomorphism φ : D → X . Then
for all x, y ∈ D, we have that φ(x −· y) = φ(x) −· φ(y), φ(0) = 0, φ(1) = 1,∫
Ω φ(x)dµ = IN

(
φ(x)

)
= I(x), and d(x, y) = dN

(
φ(x), φ(y)

)
. Let M0 be

the smallest LRV-prestructure containing D. By Proposition 2.7, we know
that every nonzero element x ∈ M0 has a unique decomposition of the form
x = r1a1 ∔ · · · ∔ rnan, where n ∈ N, 0 < r1 < · · · < rn ∈ D, a1, . . . , an ∈ D,
ai 6= 0 for each i, and ai ∧ aj = 0 whenever i 6= j. We extend φ : D → X to a
mapping Φ: M0 → N , by defining

Φ(r1a1 ∔ · · ·∔ rnan) := r1φ(a1) ∔ · · ·∔ rnφ(an),

where n ∈ N, 0 < r1 < · · · < rn ∈ D, a1, . . . , an ∈ D, ai 6= 0 for each i, and
ai ∧ aj = 0 whenever i 6= j. Clearly, Φ is uniquely determined by φ.

Next, we will check that Φ preserves 0,1,¬, 1
2 ,∔, I and d. We already know

that Φ(0) = 0 and Φ(1) = 1. To show that Φ preserves ¬, 1
2 ,∔, we need the

following claim:

Claim 2.9. Take a nonzero x ∈ M0. Suppose x has the form r1a1∔ · · ·∔rnan,
where n ∈ N, 0 < r1 < · · · < rn ∈ D, a1, . . . , an ∈ D, ai 6= 0 for each i, and
ai ∧ aj = 0 whenever i 6= j. Suppose x has another form s1b1 ∔ · · · ∔ smbm,

where m ∈ N, s1, . . . , sm ∈ D, b1, . . . , bm ∈ D, and bk ∧ bl = 0 whenever k 6= l.
Then

Φ(x) = r1Φ(a1) + · · · + rnΦ(an) = s1Φ(b1) + · · · + smΦ(bm).
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Proof of Claim 2.9: Suppose x has the form s1b1∔ · · ·∔smbm, where m ∈ N,
s1, . . . , sm ∈ D, b1, . . . , bm ∈ D, and bk ∧ bl = 0 whenever k 6= l. Then after
a standard procedure to reorder terms, delete 0 terms, and combine the terms
with the same coefficients, the form of x becomes r1a1∔· · ·∔rnan, where n ∈ N,
0 < r1 < · · · < rn ∈ D, a1, . . . , an ∈ D, ai 6= 0 for each i, and ai ∧ aj = 0

whenever i 6= j, which is the unique decomposition shown in Proposition 2.7. It
is easy to verify that during the reordering, deleting, and combining processes,
although the form of x has changed, the sum s1Φ(b1) + · · ·+ smΦ(bm) remains
the same. This completes the proof of Claim 2.9.

Next, we will show that Φ preserves 1
2 , ¬, and ∔. Take a nonzero x ∈ M0.

Suppose x has the form r1a1∔ · · ·∔ rnan, where n ∈ N, 0 < r1 < · · · < rn ∈ D,
a1, . . . , an ∈ D, ai 6= 0 for each i, and ai ∧ aj = 0 whenever i 6= j. As shown in
the proof of Proposition 2.7, we know that x

2 = r1
2 a1 ∔ · · ·∔ rn

2 an, and

¬x = ¬r1a1 ∔ · · ·∔ ¬rnan ∔ ¬(a1 ∨ · · · ∨ an).

By Claim 2.9, we have

Φ(
x

2
) =

r1
2

Φ(a1) ∔ · · ·∔
rn
2

Φ(an) =
1

2
(r1Φ(a1) ∔ · · ·∔ rnΦ(an)) =

1

2
Φ(x).

Hence, Φ preserves 1
2 . Also

Φ(¬x) = Φ(¬r1a1 ∔ · · ·∔ ¬rnan ∔ ¬(a1 ∨ · · · ∨ an))

= ¬r1Φ(a1) ∔ · · ·∔ ¬rnΦ(an) ∔ Φ(¬(a1 ∨ · · · ∨ an)).

Then because Φ(an), . . . ,Φ(a1),Φ(¬(a1∨· · ·∨an)) are in L1(µ, [0, 1]), ai∧aj = 0

if i 6= j, and Φ: D → X is an LPr-isomorphism, we have that

¬r1Φ(a1) ∔ · · ·∔ ¬rnΦ(an) ∔ Φ(¬(a1 ∨ · · · ∨ an))

= (1 − r1)Φ(a1) + · · · + (1 − rn)Φ(an) + (1 − Φ(a1) − · · · − Φ(an))

= 1 − r1Φ(a1) − · · · − rnΦ(an) = ¬(r1Φ(a1) + · · · + rnΦ(an))

= ¬(r1Φ(a1) ∔ · · ·∔ rnΦ(an)).

Hence, Φ(¬x) = ¬Φ(x); that is, Φ preserves ¬.
Take nonzero x, y ∈ M0. Suppose they have the form x = r1a1 ∔ · · ·∔ rkak

and y = s1b1 ∔ · · · ∔ slbl, where k, l ∈ N, 0 < r1 < · · · < rk ∈ D, 0 < s1 <
· · · < sl ∈ D, a1, . . . , ak, b1, . . . , bl ∈ D, ai 6= 0 for all 1 ≤ i ≤ k, bj 6= 0 for all
1 ≤ j ≤ l, ai ∧ ai′ = 0 whenever 1 ≤ i 6= i′ ≤ k, and bj ∧ bj′ = 0 whenever
1 ≤ j 6= j′ ≤ l. Let a0 be ¬(a1 ∨ · · · ∨ ak) and let b0 be ¬(b1 ∨ · · · ∨ bl).
Since (D,0,1,¬,∧,∨) is a boolean algebra, we have a0 ∨ a1 ∨ · · · ∨ ak = b0 ∨
b1 ∨ · · · ∨ bl = 1, ai ∧ ai′ = 0 for all 0 ≤ i 6= i′ ≤ k, and bj ∧ bj′ = 0 for all
0 ≤ j 6= j′ ≤ l. That is, {a0, . . . , ak} and {b0, . . . , bl} are two partitions of
1. Then let {c1, . . . , cm} be the partition generated by partitions {a0, . . . , ak}
and {b0, . . . , bl}. Then by Lemma 2.6(v), (P3), Fact 2.2(ix), and induction, we
may assume that x = r′1c1 ∔ · · · ∔ r′mcm and y = s′1c1 ∔ · · · ∔ s′mcm, where



AXIOMS FOR RV 541

r′1, . . . , r
′
m, s′1, . . . , s

′
m ∈ D (could be 0), and {c1, . . . , cm} is a partition of 1.

Then by Lemma 2.6, we have x∔ y = (r′1 ∔ s′1)c1 ∔ · · ·∔ (r′m ∔ s′m)cm. Hence

Φ(x∔ y) = (r′1 ∔ s′1)Φ(c1) + · · · + (r′m ∔ s′m)Φ(cm)

= (r′1Φ(c1) + · · · + r′mΦ(cm)) ∔ (s′1Φ(c1) + · · · + s′mΦ(cm))

= Φ(x) ∔ Φ(y).

Thus, Φ preserves ∔.
Now, we will prove Φ preserves I and d. Take a nonzero x ∈ M0. Suppose

x has the form r1a1 ∔ · · · ∔ rnan, where n ∈ N, 0 < r1 < · · · < rn ∈ D,
a1, . . . , an ∈ D, ai 6= 0 for each i, and ai ∧ aj = 0 whenever i 6= j. Since
Φ: D → X is an isomorphism, we have Φ(ai) ∧ Φ(aj) = 0 whenever i 6= j. For
all f ∈ N , we have IN (f) =

∫
Ω
fdµ. Therefore,

IN (Φ(x)) =

∫

Ω

Φ(x)dµ =

∫

Ω

(
r1Φ(a1) ∔ · · ·∔ rnΦ(an)

)
dµ

= r1

∫

Ω

Φ(a1)dµ + · · · + rn

∫

Ω

Φ(an)dµ

= r1I
N (Φ(a1)) + · · · + rnI

N (Φ(an))

= r1I(a1) + · · · + rnI(an).

By Lemma 2.6(vii), we have IN (Φ(x)) = I(r1a1) + · · · + I(rnan). Then by
Lemma 2.5, we have I(r1a1) + · · ·+ I(rnan) = I(r1a1∔ · · ·∔ rnan) = I(x), and
thus I(x) = IN (Φ(x)). That is, Φ preserves I. Since d(x, y) = I(x−· y)+I(y−· x)
for all x, y ∈ M and Φ preserves I and −· , it follows that Φ preserves d.

Therefore, Φ is an LRV-embedding from M0 to N . �

Theorem 2.10. Let M be a model of RV. Then M is isomorphic to the

LRV-structure
(
L1

(
(Ω,F , µ), [0, 1]

)
,0,¬,−· , 1

2 , I, d
)

for some probability space

(Ω,F , µ).

Proof. Let D = {x ∈ M | I(x ∧ ¬x)} = 0. By Proposition 2.3, we know that

(D,0,¬, ·∁,∩,∪, µ) is a model of Pr. By [5, Theorem 5.2], we know that there
is a probability space (Ω,F , µ) such that D as an LPr-structure is isomorphic

to F̂ . Let N =
(
L1((Ω,F , µ), [0, 1]),0,¬,−· , 1

2 , I, d
)
. By Proposition 2.1, we

have N |= RV. Let X denote L1((Ω,F , µ), {0, 1}). By Proposition 2.3, we have

(X , 0, 1,¬,∧,∨, µ̄) |= Pr and it is isomorphic to F̂ . Hence, D is LPr-isomorphic
to X . We call this isomorphism φ : D → X . Then by Proposition 2.8, we
extend φ : D → X to an LRV-embedding Φ: M0 → N .

Let (M ′, d) be the completion of (M0, d) in M . Because Φ is isometric, we
know that Φ is extended uniquely to an embedding Φ from M′ to N . Note that
dyadic number valued simple functions are dense in N . Hence Φ is a surjective
embedding; that is, Φ is an isomorphism between LRV-structures M′ and N .
Then we will show M′ is M.
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For every x ∈ M and n ∈ N, using (APPR), there are elements y1, . . . , y2n ∈
M such that
maxi I(yi∧¬yi) ≤

1
2n and d(x, 1

2n y1∔ · · ·∔ 1
2n y2n) ≤ 1

2n . For every 1 ≤ i ≤ 2n,

since I(yi ∧ ¬yi) = dist(yi, D), there is zi ∈ D such that d(yi, zi) ≤ 1
2n . Then

by (P1),

d(
1

2n
y1 ∔ · · ·∔

1

2n
y2n ,

1

2n
z1 ∔ · · ·∔

1

2n
z2n)

≤ d(
1

2n
y1,

1

2n
z1) + · · · + d(

1

2n
y2n ,

1

2n
z2n)

=
1

2n
(
d(y1, z1) + · · · + d(y2n , z2n)

)

≤ max
1≤i≤2n

d(yi, zi) ≤
1

2n

where the equality follows from Fact 2.2(x). Then

d(x,
1

2n
z1 ∔ · · ·∔

1

2n
z2n)

≤ d(x,
1

2n
y1 ∔ · · ·∔

1

2n
y2n) + d(

1

2n
y1 ∔ · · ·∔

1

2n
y2n ,

1

2n
z1 ∔ · · ·∔

1

2n
z2n)

≤
1

2n
+

1

2n
=

1

2n−1
.

Since 1
2n z1 ∔ · · · ∔ 1

2n z2n ∈ M0, it follows that M0 is dense in M , whereby

M ′ = M . Therefore Φ is an isomorphism from M to N . �

Corollary 2.11. Let M be an LRV-structure. Then M is a model of ARV if

and only if M is isomorphic to
(
L1

(
(Ω,F , µ), [0, 1]

)
,0,¬,−· , 12 , I, d

)
for some

atomless probability space (Ω,F , µ).

Proof. By Proposition 2.1, we know that
(
L1

(
(Ω,F , µ), [0, 1]

)
,0,¬,−· , 1

2 , I, d
)

,

where (Ω,F , µ) is an atomless probability space, is a model of ARV.
For the other direction, by Theorem 2.10, M as a model of RV is isomor-

phic to the LRV-structure
(
L1

(
(Ω,F , µ), [0, 1]

)
,0,¬,−· , 1

2 , I, d
)

for a probabil-

ity space (Ω,F , µ). Let D denote L1
(
(Ω,F , µ), {0, 1}

)
. By Proposition 2.3,

D is a model of Pr and D is LPr-isomorphic to F̂ . For all x ∈ D, using
(NA) we know that for every ǫ > 0, there is yǫ such that dist(yǫ, D) ≤ ǫ and

|I(yǫ ∧ x) − I(x)
2

∣∣ ≤ ǫ. Then there is y ∈ D such that |I(y ∧ x) − I(x)
2

∣∣ ≤ 2ǫ.
Thus D as a LPr-structure satisfies Axiom (iv) in APr, whereby D is a model
of APr. By [5, Corollary 6.1], we have that (Ω,F , µ) is atomless. �

Remark 2.12. In [2], Ben Yaacov showed that the class RV of random variable
structures and the class PR of probability algebras are bi-interpretable. Then
by [1, Theorem A.9], the class RV is elementary if and only if the class PR is,
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which is clear. In the proof of Theorem A.9 there is a way to give axioms for
RV, albeit not in a very intuitive form.
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