DOI QR코드

DOI QR Code

Mutations of TYR and MITF Genes are Associated with Plumage Colour Phenotypes in Geese

  • Wang, Ye (Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science) ;
  • Li, Si-Ming (Institute of Animal Genetics and Breeding, Sichuan Agricultural University) ;
  • Huang, Jing (Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science) ;
  • Chen, Shi-Yi (Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science) ;
  • Liu, Yi-Ping (Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science)
  • Received : 2013.06.17
  • Accepted : 2014.01.08
  • Published : 2014.06.01

Abstract

The polymorphism of microphthalmia-associated transcription factor (MITF) and tyrosinase (TYR) genes have been proposed to play a vital role in coat colour genesis in mammals, but their role remains ambiguous in geese at best. Here, we cloned and sequenced 1,397 bp coding region of MITF gene and a 588 bp fragment of TYR exon 1 for polymorphism analysis among 157 domestic geese showing three types of plumage colour. We detected a total of three SNPs (c.280T>C, c.345G>A, and c.369G>A) in TYR and six haplotypes (H1-H6). Among them, haplotypes H1, H2, H3, and H5 were significantly associated with white plumage trait of Zhedong White Geese. However, only diplotype H1H1 and H3H5 were significantly associated with white plumage trait of Zhedong White Geese (p<0.01). We only detected one SNP (c.1109C>T) for MITF gene and found that genotype CT and TT were significantly associated with white plumage trait of Zhedong White Geese. Briefly, our study suggested an association between polymorphisms of TYR and MITF genes and the plumage colour trait in domestic geese.

Keywords

References

  1. Aigner, B., U. Besenfelder, M. Muller, and G. Brem. 2000. Tyrosinase gene variants in different rabbit strains. Mamm. Genome 11:700-702. https://doi.org/10.1007/s003350010120
  2. Amiel, J., P. M. Watkin, M. Tassabehji, A. P. Read, and R. M. Winter. 1998. Mutation of the MITF gene in albinism-deafness syndrome (Tietz syndrome). Clin. Dysmorphol. 7:17-20.
  3. Andersson, L. 2009. Genome-wide association analysis in domestic animals: A powerful approach for genetic dissection of trait loci. Genetica 136:341-349. https://doi.org/10.1007/s10709-008-9312-4
  4. Bertolotto, C., P. Abbe, T. J. Hemesath, K. Bille, D. E. Fisher, J. P. Ortonne, and R. Ballotti. 1998. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142:827-835. https://doi.org/10.1083/jcb.142.3.827
  5. Bertolotto, C., K. Bille, J. P. Ortonne, and R. Ballotti. 1996. Regulation of tyrosinase gene expression by cAMP in B16 melanoma cells involves two CATGTG motifs surrounding the TATA box: Implication of the microphthalmia gene product. J. Cell Biol. 134:747-755. https://doi.org/10.1083/jcb.134.3.747
  6. Blaszczyk, W. M., L. Arning, K. P. Hoffmann, and J. T. Epplen. 2005. A tyrosinase missense mutation causes albinism in the Wistar rat. Pigment Cell Res. 18:144-145. https://doi.org/10.1111/j.1600-0749.2005.00227.x
  7. Fukai, K., S. A. Holmes, N. J. Lucchese, V. M. Siu, R. G. Weleber, R. E. Schnur, and R. A. Spritz. 1995. Autosomal recessive ocular albinism associated with a functionally significant tyrosinase gene polymorphism. Nat. Genet. 9:92-95. https://doi.org/10.1038/ng0195-92
  8. Hodgkinson, C. A., K. J. Moore, A. Nakayama, E. Steingrimsson, N. G. Copeland, N. A. Jenkins, and H. Arnheiter. 1993. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74:395-404. https://doi.org/10.1016/0092-8674(93)90429-T
  9. Hughes, M. J., J. Lingrel, J. Krakowsky, and K. Anderson. 1993. A helix-loop-helix transcription factor-like gene is located at the mi locus. J. Biol. Chem. 268:20687-20690.
  10. Imes, D., L. Geary, R. Grahn, and L. Lyons. 2006. Albinism in the domestic cat (Felis catus) is associated with a tyrosinase (TYR) mutation. Anim. Genet. 37:175-178. https://doi.org/10.1111/j.1365-2052.2005.01409.x
  11. Ito, S., K. Wakamatsu, and H. Ozeki. 2000. Chemical analysis of melanins and its application to the study of the regulation of melanogenesis. Pigment Cell Res. 13:103-109. https://doi.org/10.1034/j.1600-0749.13.s8.19.x
  12. Kimchi-Sarfaty, C., J. M. Oh, I. W. Kim, Z. E. Sauna, A. M. Calcagno, S. V. Ambudkar, and M. M. Gottesman. 2007. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525-528. https://doi.org/10.1126/science.1135308
  13. Komar, A. A. 2007. Silent SNPs: Impact on gene function and phenotype. Pharmacogenomics 8:1075-1080. https://doi.org/10.2217/14622416.8.8.1075
  14. Kwon, B. S. and R. Halaban, and C. Chintamaneni. 1989. Molecular basis of mouse Himalayan mutation. Biochem. Biophys. Res. Commun. 161:252-260. https://doi.org/10.1016/0006-291X(89)91588-X
  15. Lerner, A. B. and T. B. Fitzpatrick. 1950. Biochemistry of melanin formation. Physiol. Rev. 30:91-126.
  16. Liu, W., S. Chen, J. Zheng, L. Qu, G. Xu, and N. Yang. 2010. Developmental phenotypic-genotypic associations of tyrosinase and melanocortin 1 receptor genes with changing profiles in chicken plumage pigmentation. Poult. Sci. 89:1110-1114. https://doi.org/10.3382/ps.2010-00628
  17. Minvielle, F., B. Bed'hom, J. L. Coville, S.I. Ito, M. Inoue-Murayama, and D. Gourichon. 2010. The "silver" Japanese quail and the MITF gene: Causal mutation, associated traits and homology with the "blue" chicken plumage. BMC Genet. 11: 15.
  18. Mochii, M., A. Iio, H. Yamamoto, T. Takeuchi, and G. Eguchi. 1992. Isolation and characterization of a chicken tyrosinase cDNA. Pigment Cell Res. 5:162-167. https://doi.org/10.1111/j.1600-0749.1992.tb00454.x
  19. Moore, K. J. 1995. Insight into the microphthalmia gene. Trends Genet. 11:442-448. https://doi.org/10.1016/S0168-9525(00)89143-X
  20. Oetting, W., A. Churilla, H. Yamamoto, and J. Brumbaugh. 1985. C pigment locus mutants of the fowl produce enzymatically inactive tyrosinase-like molecules. J. Exp. Zool. 235:237-245. https://doi.org/10.1002/jez.1402350210
  21. Oetting, W. S. 2000. The tyrosinase gene and oculocutaneous albinism type 1 (OCA1): A model for understanding the molecular biology of melanin formation. Pigment Cell Res. 13: 320-325. https://doi.org/10.1034/j.1600-0749.2000.130503.x
  22. Prota, G. 1980. Recent advances in the chemistry of melanogenesis in mammals. J. Invest. Dermatol. 75:122-127. https://doi.org/10.1111/1523-1747.ep12521344
  23. Sanchez-Ferrer, J. N. Rodriguez-Lopez, F. Garcia-Canovas, and F. Garcia-Carmona. 1995. Tyrosinase: a comprehensive review of its mechanism. Biochim. Biophys. Acta. Protein Struct. Mol. Enzymol. 1247:1-11. https://doi.org/10.1016/0167-4838(94)00204-T
  24. Sato, S., T. Otake, C. Suzuki, J. Saburi, and E. Kobayashi. 2007. Mapping of the recessive white locus and analysis of the tyrosinase gene in chickens. Poult. Sci. 86:2126-2133. https://doi.org/10.1093/ps/86.10.2126
  25. Scherer, D. and R. Kumar. 2010. Genetics of pigmentation in skin cancer?A review. Mutat. Res. 705:141-153. https://doi.org/10.1016/j.mrrev.2010.06.002
  26. Schmidt-Kuntzel, A., E. Eizirik, S. J. O'Brien, and M. Menotti-Raymond. 2005. Tyrosinase and tyrosinase related protein 1 alleles specify domestic cat coat color phenotypes of the albino and brown loci. J. Hered. 96:289-301. https://doi.org/10.1093/jhered/esi066
  27. Schmutz, S. M., T. G. Berryere, D. C. Ciobanu, A. J. Mileham, B. H. Schmidtz, and M. Fredholm. 2004. A form of albinism in cattle is caused by a tyrosinase frameshift mutation. Mamm. Genome 15:62-67. https://doi.org/10.1007/s00335-002-2249-5
  28. Schmutz, S. M., T. G. Berryere, and D. L. Dreger. 2009. MITF and white spotting in dogs: a population study. J. Hered. 100:S66-S74. https://doi.org/10.1093/jhered/esp029
  29. Smith, S. D., P. M. Kelley, J. B. Kenyon, and D. Hoover. 2000. Tietz syndrome (hypopigmentation/deafness) caused by mutation of MITF. J. Med. Genet. 37:446-448. https://doi.org/10.1136/jmg.37.6.446
  30. Smyth, J. R. Jr. 1990. Genetics of plumage, skin and eye pigmentation in chickens. In: Poultry Breeding and Genetics (Ed. R. D. Crawford). Elsevier, Amsterdam, Holland. pp. 109-168.
  31. Steingrimsson, E., K. J. Moore, M. L. Lamoreux, A. R. Ferre-D'amare, S. K. Burley, D. C. S. Zimring, L. C. Skow, C. A. Hodgkinson, H. Arnheiter, and N. G. Copeland. 1994. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat. Genet. 8:256-263. https://doi.org/10.1038/ng1194-256
  32. Stephens, M., N. J. Smith, and P. Donnelly. 2001. A new statistical method for haplotype reconstruction from population data. The Am. J. Human Genet. 68:978-989. https://doi.org/10.1086/319501
  33. Tobita-Teramoto, T., G. Jang, K. Kino, D. Salter, J. Brumbaugh, and T. Akiyama. 2000. Autosomal albino chicken mutation (ca/ca) deletes hexanucleotide (-deltaGACTGG817) at a copper-binding site of the tyrosinase gene. Poult. Sci. 79:46-50. https://doi.org/10.1093/ps/79.1.46
  34. Variant, W. S. 1994. A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia gene at chromosome 3p12-p14. 1. Nat Genet. 7:509-512. https://doi.org/10.1038/ng0894-509
  35. Yasumoto, K.-I., K. Yokoyama, K. Shibata, Y. Tomita, and S. Shibahara. 1994. Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol. Cell. Biol. 14:8058-8070.
  36. Yasumoto, K. I., S. Amae, T. Udono, N. Fuse, K. Takeda, and S. Shibahara. 1998. A big gene linked to small eyes encodes multiple Mitf isoforms: many promoters make light work. Pigment Cell Res. 11:329-336. https://doi.org/10.1111/j.1600-0749.1998.tb00491.x
  37. Yokoyama, T., D. W. Silversides, K. G. Waymire, B. S. Kwon, T. Takeuchi, and P. A. Overbeek. 1990. Conserved cysteine to serine mutation in tyrosinase is responsible for the classical albino mutation in laboratory mice. Nucl. Acids Res. 18:7293-7298. https://doi.org/10.1093/nar/18.24.7293

Cited by

  1. Transcriptomic analyses of regenerating adult feathers in chicken vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-1966-6
  2. The Genome of the “Great Speciator” Provides Insights into Bird Diversification vol.7, pp.9, 2015, https://doi.org/10.1093/gbe/evv168
  3. Genetic variation in the MITF promoter affects skin colour and transcriptional activity in black-boned chickens pp.1466-1799, 2017, https://doi.org/10.1080/00071668.2017.1379053
  4. Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution vol.17, pp.4, 2016, https://doi.org/10.3390/ijms17040520
  5. gene and their different roles in melanogenesis in the Muchuan black-boned chicken pp.1466-1799, 2018, https://doi.org/10.1080/00071668.2018.1533633
  6. vol.92, pp.4, 2018, https://doi.org/10.1111/jfb.13556
  7. Comparative transcriptome analysis reveals the genetic basis of coat color variation in Pashmina goat vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-42676-y
  8. Integrated Analysis of mRNA Expression, CpG Island Methylation, and Polymorphisms in the MITF Gene in Ducks (Anas platyrhynchos) vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/8512467
  9. Comparison of miRNA-101a-3p and miRNA-144a-3p regulation with the key genes of alpaca melanocyte pigmentation vol.20, pp.1, 2019, https://doi.org/10.1186/s12867-019-0137-8
  10. Kashmir Anz geese breed vol.76, pp.1, 2014, https://doi.org/10.1080/00439339.2020.1711293
  11. A 14-bp insertion in endothelin receptor B-like (EDNRB2) is associated with white plumage in Chinese geese vol.21, pp.1, 2014, https://doi.org/10.1186/s12864-020-6562-8
  12. Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds vol.57, pp.8, 2014, https://doi.org/10.1134/s102279542108007x