DOI QR코드

DOI QR Code

Numerical Simulation based on SPH of Bullet Impact for Fuel Cell Group of Rotorcraft

입자법 기반 항공기용 연료셀 그룹 피탄 수치모사

  • 김현기 (한국항공우주연구원 항공기술연구소) ;
  • 김성찬 (한국항공우주연구원 항공기술연구소)
  • Received : 2014.01.15
  • Accepted : 2014.03.19
  • Published : 2014.04.30

Abstract

There is a big risk of bullet impact because military rotorcraft is run in the battle environment. Due to the bullet impact, the rapid increase of the internal pressure can cause the internal explosion or fire of fuel cell. It can be a deadly damage on the survivability of crews. Then, fuel cell of military rotorcraft should be designed taking into account the extreme situation. As the design factor of fuel cell, the internal fluid pressure, structural stress and bullet kinetic energy can be considered. The verification test by real object is the best way to obtain these design data. But, it is a big burden due to huge cost and long-term preparation efforts and the failure of verification test can result in serious delay of a entire development plan. Thus, at the early design stage, the various numerical simulations test is needed to reduce the risk of trial-and-error together with prediction of the design data. In the present study, the bullet impact numerical simulation based on SPH(smoothed particle hydrodynamic) is conducted with the commercial package, LS-DYNA. Then, the resulting equivalent stress, internal pressure and bullet's kinetic energy are evaluated in detail to examine the possibility to obtain the configuration design data of the fuel cell.

회전익 항공기 중 군에서 운용하는 기동헬기는 전장상황에서 운용되기 때문에 연료셀 피탄 상황에 직면할 가능성이 높다. 연료셀 피탄에 따른 내부압력 증가로 내부폭발이나 화재가 발생할 수 있으며, 이는 승무원의 생존 가능성에 치명적인 영향을 주게 된다. 따라서, 승무원의 생존성을 극대화하기 위해서는 연료셀이 직면 가능한 극한 상황을 예측하여 설계에 반영해야 한다. 항공기 연료셀 설계시 고려해야 하는 데이타는 피탄에 의한 연료셀 내부압력, 수압램 영향에 의한 연료셀 자체 및 금속피팅부 응력, 탄환의 운동에너지 등이 포함될 수 있다. 이러한 설계 데이터 확보를 위해서는 실물 시험을 수행하는 것이 가장 바람직하지만, 시간과 비용의 부담과 더불어 시험실패와 같은 시행착오 위험성으로 많은 제약이 따른다. 따라서, 사전에 다양한 설계 데이터 예측과 시행착오의 최소화를 위해서는 피탄 상황에 대한 수치해석이 필요하다. 본 연구에서는 입자법을 사용하여 연료셀 피탄 조건에 대한 유체-구조 연성 수치해석을 수행하였다. 수치해석은 전용 충돌해석 프로그램인 LS-DYNA를 사용하였고, 결과로 얻어진 탄의 거동과 에너지, 연료셀 내부압력과 등가응력의 평가를 통해 연료셀 설계와 관련한 데이터 확보 가능성을 타진하였다.

Keywords

References

  1. Kim, J.H., Jun, S.M. (2006) Battle Damage Analysis of Aircraft Wing Fuel Tanks by Hydrodynamic Ram Effect, The Korean Society for Aeronautical & Space Sciences, 34(4), pp.17-24. https://doi.org/10.5139/JKSAS.2006.34.4.017
  2. Kim, H.G., Kim, S.C., Lee, J.W., Hwang, I.H., Kim, K.S. (2011) Numerical Simulation of Crash Impact Test for Fuel Tank of Rotorcraft, Journal of Computational Structural Engineering Institute of Korea, 24(5), pp.521-530.
  3. Kim, H.G., Kim, S.C., Lee, J.W., Hwang, I.H. et al. (2010) Assessment of Self-sealing Performance of the Fuel Tank of the Rotorcraft against Gunfire Projectiles, Journal of the Korean Society for Aeronautical and Space Sciences, 38(5), pp.477-481. https://doi.org/10.5139/JKSAS.2010.38.5.477
  4. Kim, H.G., Kim, S.C., Lee, J.W., Hwang, I.H., Hue, J.W., Shin, D.W., Jun, P.S., Jung, T.K., Ha B.K. (2010) Assessment of Crashworthiness Performance for Fuel Tank of Rotorcraft, Journal of the Korean Society for Aeronautical and Space Sciences, 38(8), pp.806-812. https://doi.org/10.5139/JKSAS.2010.38.8.806
  5. Kim, H.G., Kim, S.C., Lee, J.W., Hwang, I.H. (2011) Slosh & Vibration Qualification Test for Fuel Tank of Rotorcraft, Korea Institute of Military Science and Technology, 14(1), pp.62-68. https://doi.org/10.9766/KIMST.2011.14.1.062
  6. Kim, H.G., Kim, S.C. (2012) Numerical Simulation of Bullet Impact for Fuel Cell of Rotorcraft, Journal of Computational Structural Engineering Institute of Korea, 25(5), pp.405-411. https://doi.org/10.7734/COSEIK.2012.25.5.405
  7. Kim, H.G., Kim, S.C., Kim, S.J., Kim, S.Y. (2013) Numerical Simulation of Full-scale Crash Impact Test for Fuel Cell of Rotorcraft, Journal of Computational Structural Engineering Institute of Korea, 26(5), pp.343-349. https://doi.org/10.7734/COSEIK.2013.26.5.343
  8. Liu, W.K., Jun, S., Li, S., Adee, J., Belytschko, T. (1995) Reproducing Kernel Particle Methods for Structural Dynamics, International Journal for Numerical Methods in Engineering, 38, pp.1655-1679. https://doi.org/10.1002/nme.1620381005
  9. Ministry of Defense (1987) Flexible Tanks for Use in Aircraft Fuel and Methanol/Water Systems, DEF-STAN-15-2/1.
  10. Monaghan, J. (1992) Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics, 30, pp.543-574. https://doi.org/10.1146/annurev.aa.30.090192.002551
  11. Monaghan, J., Gingold, R. (1983) Shock Simulation by the Particle Method SPH, Journal of Computational Physics, 52(2), pp.374-389. https://doi.org/10.1016/0021-9991(83)90036-0
  12. Naval Surface Weapons Center (1977) Prediction of Impact Pressures, Forces, and Moments during Vertical and Oblique Water Enter, NSWC/WOL/TR 77-16.
  13. Philipp Hahn (2009) On the Use of Meshless Methods in Acoustic Simulations, University of Wisconsin-Madison, Thesis of Master.
  14. Army Aviation U.S., Missile Command (2007) Detail Specification for the Tank, Fuel, Crash-Resistant, Ballistic-Tolerant, Aircraft, MIL-DTL-27422D.
  15. Kim, Y.W., Park, W.G., Kim, C.S. (1999) Numerical Analysis of Impact Forces and Entry Behaviors of the High Speed Water Entry Bodies, 4(1), pp.1-7.