DOI QR코드

DOI QR Code

Characteristics of Sand-Silt Mixtures during Freezing-Thawing by using Elastic Waves

탄성파를 이용한 모래-실트 혼합토의 동결-융해 특성

  • Kang, Mingu (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kim, Sangyeob (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Hong, Seungseo (Geotechnical Engineering Research Division, Korea Institute of Construction Technology) ;
  • Kim, Youngseok (Geotechnical Engineering Research Division, Korea Institute of Construction Technology) ;
  • Lee, Jongsub (School of Civil, Environmental and Architectural Engineering, Korea University)
  • Received : 2014.02.06
  • Accepted : 2014.03.29
  • Published : 2014.05.01

Abstract

In winter season, the pore water inside the ground freezes and thaws repetitively due to the cold air temperature. When the freezing-thawing processes are repeated on the ground, the change in soil particle structure occurs and thus the damage of the infrastructure may be following. This study was performed in order to investigate the stiffness change of soils due to the freeze-thaw by using elastic waves. Sand-silt mixtures are prepared with in the silt fraction of 40 %, 60 % and 80 % in weight and in the degree of saturation of 40 %. The specimens are placed into the square freezing-thawing cell by the temping method. For the measurement of the elastic waves, a pair of the bender elements and a pair of piezo disk elements are installed on the cell, and a thermocouple is inserted into soils for the measurement of the temperature. The temperature of the mixtures is decreased from $20^{\circ}C$ to $-10^{\circ}C$ during freezing, is maintained at $-20^{\circ}C$ for 18 hours, is gradually increased up to the room temperature of $20^{\circ}C$ to thaw the specimens. The shear waves, the compressional waves and the temperature are measured during the freeze-thaw process. The experimental result indicates that the shear and the compressional wave velocities after thawing are smaller than those of before freezing. The velocity ratio of after thawing to before freezing of shear wave is smaller than that of the compressional wave. As silt fraction increases from 40 % to 80 %, the shear and compressional wave velocities are gradually increased. This study suggests that the freezing-thawing process in unsaturated soil loosens the soil particle structure, and the shear wave velocity reflects the effect of freezing-thawing more sensitively than the compressional wave velocity.

겨울철의 낮은 기온으로 인하여 지반 내부의 간극수는 동결과 융해를 반복한다. 지반에 이러한 동결-융해작용이 반복되면 흙의 입자구조 변형이 발생하며 이는 지중 기반시설에 손상을 가져올 수 있다. 본 연구는 흙의 동결-융해 과정에서의 탄성파 속도변화를 통하여 흙의 강성 변화 양상을 알아보기 위하여 수행되었다. 40 %, 60 %, 80 %의 3가지 모래-실트의 무게비를 가진 모래-실트 혼합토를 포화도 40 %, 상대밀도 70 %로 동일하게 조성하였다. 각 시료를 동결-융해를 위해 제작된 사각형 형태의 셀에 다짐법으로 조성하였다. 탄성파를 측정하기 위하여 한 쌍의 벤더 엘리먼트와 피에조 디스크 엘리먼트를 시료 양편에 설치하였으며, 시료의 온도 변화 양상을 관찰하기 위하여 탄성파 트랜스듀서와 같은 깊이의 중앙부에 열전대를 설치였다. 조성한 시료에 대하여 시료를 $20^{\circ}C$에서 $-10^{\circ}C$까지 동결시킨 후 $-20^{\circ}C$를 18시간 동안 유지하였으며, 다시 실험실 상온($20^{\circ}C$)까지 온도를 서서히 올려 융해시켰다. 이 과정에서 온도, 전단파, 그리고 압축파를 측정하였다. 연구결과, 융해 이후의 탄성파 속도는 같은 온도의 동결 이전보다 감소하였다. 이때 전단파의 속도가 압축파의 속도보다 더 큰 비율로 감소하는 모습을 보였다. 실트의 함량이 40 %에서 80 %까지 증가함에 따라 탄성파의 속도는 증가하는 양상을 보였다. 본 연구를 통해 동결-융해가 불포화토의 입자구조를 느슨하게 만들며, 그 영향은 압축파에 비해 전단파 속도의 변화에서 잘 나타남을 알 수 있었다.

Keywords

References

  1. ASTM D4253-00 (2006), Standard test methods for maximum index density and unit weight of soils using a vibratory table, Annual Book of ASTM Standard.
  2. ASTM D4254-00 (2006), Standard test methods for minimum index density and unit weight of soils calculation of relative density, Annual Book of ASTM Standard.
  3. ASTM D854-10 (2006), Standard test methods for specific gravity of soil solids by water pycnometer. Annual Book of ASTM Standard.
  4. Christ, M. and Park, J. B. (2009), Ultrasonic technique as tool for determining physical and mechanical properties of frozen soils, Cold Regions Science and Technology, Vol. 58, No. 3, pp. 136-142. https://doi.org/10.1016/j.coldregions.2009.05.008
  5. Deschartres, M. H., Cohon-Tenoudji, F., Aguirre-Puente, J. and Khastou, B. (1988), Acoustic and unfrozen water content determination, Proc.5th Inl. Conf. on Permafrost, International Permafrost Association (IPA), Trondheim, Norway, Vol. 1, pp. 324-328.
  6. Eom, Y. H., Truong, Q. H., Byun, Y. H. and Lee, J. S. (2009). Elastic wave characteristics according to cementation of dissolved salt, Journal of the Korean Geotechnical Society, Vol. 25, No. 5, pp. 75-86 (in Korean).
  7. Graham, J. and Au, V. C. S. (1985), Effects of freeze-thaw and softening on a natural clay at low stresses, Canadian Geotechnical Journal, Vol. 22, No. 1, pp. 69-78. https://doi.org/10.1139/t85-007
  8. Heo, I. H. (2006), The distribution of regional unusual temperature in Korea, Journal of the Korean Association of Regional Geographers, Vol. 12, No. 4, pp. 461-474 (in Korean).
  9. Ishihara, K., Huang, Y. and Tsuchiya, H. (1998), Liquefaction resistance of nearly saturated sand as correlated with longitudinal wave velocity, In: Proceedings of the Biot Conference on Poromechanics, A Tribute to Maurice A. Biot. Balkema, Rotterdam, Netherland, p. 583-586.
  10. Kang, M. G., Kim, J. C., Park, J. H. and Lee, J. S. (2013), Freezing and thawing effects of sand-silt mixtures on elastic waves, Sciences in Cold and Arid Regions, Vol. 5, No. 4, pp. 418-424. https://doi.org/10.3724/SP.J.1226.2013.00418
  11. Kim, Y. S., Kim, S. S, Jang, B. S. and Shin, C. G. (2004), Evaluation of engineering properties of decomposed granite soil due to cyclic freezing and thawing, KSCE Conference, pp. 5408-5412 (in Korean).
  12. Lee, C., Truong, Q. H. and Lee, J. S. (2010), Cementation and bond degradation of rubber-sand mixtures, Canadian Geotechnical Journal, Vol. 47, No. 7, pp. 763-774. https://doi.org/10.1139/T09-139
  13. Lee, J. S. and Lee, C. H. (2006), Principles and considerations of bender element tests, Journal of the Korean Geotechnical Society, Vol. 22, No. 5, pp. 47-57 (in Korean).
  14. Lee, J. S., Lee, C. H., Lee, W. J. and Santamarina, J. C. (2006), Characteristics of engineered soils, Journal of the Korean Geotechnical Society, Vol. 22, No. 8, pp. 129-136 (in Korean).
  15. Lee, J. S. and Santamarina, J. C. (2005), Bender elements: performance and signal interpretation, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 9, pp. 1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
  16. Othman, M. A. and Benson, C. H. (1993), Effect of freeze-thaw on the hydraulic conductivity and morphology of compacted clay, Canadian Geotechnical Journal, Vol. 30, No. 2, pp. 236-246. https://doi.org/10.1139/t93-020
  17. Park, J. H., Kang, M. G., Seo, S. S. and Lee, J. S. (2012), The effect of surface tension on shear wave velocities according to changes of temperature and degree of saturation, Journal of Korean Society of Civil Engineers, Vol. 32, No. 6, pp. 285-293 (in Korean). https://doi.org/10.12652/Ksce.2012.32.6C.285
  18. Park, J. H. and Lee, J. S. (2014), Characteristics of elastic waves in sand-silt mixtures due to freezing, Cold Regions Science and Technology, Vol. 99, pp. 1-11. https://doi.org/10.1016/j.coldregions.2013.11.002
  19. Park, J. H., Lee, J. S., Hong, S.S. and Kim, Y. S. (2013), Properties of elastic waves in sand-silt mixtures due to freezing, In: Mechanical properties of frozen soils, ASTM STP 1568, p. 140-152.
  20. Qi, J. L., Ma, W. and Song, C. (2008), Influence of freeze-thaw on engineering properties of a silty soil, Cold Regions Science and Technology, Vol. 53, No. 3, pp. 397-404. https://doi.org/10.1016/j.coldregions.2007.05.010
  21. Roesler, S. K. (1979), Anisotropic shear modulus due to stress anisotropy, Journal of Geotechnical Engineering Division, Vol. 105, No. 7, pp. 871-880.
  22. Santamarina, J. C., Klein, K. A. and Fam, M. A. (2001), Soils and waves - particulate materials behavior, characterization and process monitoring. Wiley, New York, 508 p.
  23. Seo, S. Y., Hong, S. S. and Lee, J. S. (2013), Electrical resistivity of soils due to cyclic freezing and thawing, In 10th Internatioual Symposium on Cold Regions Development Anchorage, Alaska, pp. 149-154.
  24. Thevanayagam, S. (1998), Effect of fines and confining stress on undrained shear strength of silty sands, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 6, pp. 479-491. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479)
  25. Tran, M. K., Park, J. H., Byun, Y. H., Shin, H. S. and Lee, J. S. (2011), Shear strength characteristics of geo -soluble -materials, Journal of the Korean Geotechnical Society, Vol. 27, No. 12, pp. 17-25 (in Korean). https://doi.org/10.7843/kgs.2011.27.12.017
  26. Wang, D. Y., Zhu, Y. L., Ma, W. and Niu, Y. H. (2006), Application of ultrasonic technology for physical-mechanical properties of frozen soil, Cold Regions Science and Technology, Vol. 44, No. 1, pp. 12-19. https://doi.org/10.1016/j.coldregions.2005.06.003
  27. Yong, R. N., Boonsinsuk, P. and Yin, C. W. P. (1985), Alteration of soil behavior after cyclic freezing and thawing, In 4th International Symposium on Ground Freezing, Rotterdam, the Netherlands: A.A. Balkema, pp. 187-195.
  28. Yoon, H. K., Kim, D. H., Lee, W. J. and Lee, J. S. (2010), Field elastic wave and electrical resistivity penetrometer for evaluation of elastic moduli and void ratio, Journal of Korean Society of Civil Engineers, Vol. 30, No. 2C, pp. 85-93 (in Korean).
  29. Yoon, H. K., Lee, C. H., Kim, J. H. and Lee, J. S. (2009). Evaluation of preconsolidation stress considering small-strain shear wave velocity, Journal of the Korean Geotechnical Society, Vol. 25, No. 5, pp. 5-16 (in Korean).
  30. Yoon, Y. W., Kim, S. E., Kang, B. H. and Kang, D. S. (2003), Dynamic behavior of weathered granite soils after freezingthawing, Journal of the Korean Geotechnical Society, Vol. 19, No. 5, pp. 69-78 (in Korean).
  31. Zumdahl, S.S. and Zumdahl, S.A. (2008), Chemistry (8th edition), Florence, Kentucky: Cengage Learning, 1184 p.