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ON A GENERALIZED BERGE STRONG EQUILIBRIUM

Won Kyu Kim

Abstract. In this paper, we first introduce a generalized concept of
Berge strong equilibrium for a generalized game G = (Xi; Ti, fi)i∈I of
normal form, and using a fixed point theorem for compact acyclic maps in
admissible convex sets, we establish the existence theorem of generalized
Berge strong equilibrium for the game G with acyclic values. Also, we have
demonstrated by examples that our new approach is useful to produce
generalized Berge strong equilibria.

1. Introduction

In 1950, Nash [11] established a pioneering equilibrium existence theorem by
using the Kakutani fixed point theorem, and next, by applying the Eilenberg-
Montgomery fixed point theorem, Debreu [8] established a generalization of
Nash’s Theorem which assumes the best utility functions and response profile
correspondences. Since then, the classical results of Nash and Debreu have
served as basic references for the existence of generalized Nash equilibrium for
a non-cooperative generalized game G. In all of them, convexity of strategy
spaces, continuity and concavity/quasiconcavity of payoff functions and con-
straint correspondences were assumed. Till now, there have been a number of
generalizations, and also many applications of those theorems have been found
in several areas, e.g., see [5, 6, 15] and references therein.

On the other hand, the notion of equilibrium for a coalition R with respect
to a coalition S was introduced by Berge [6] in 1957, and next, Zhukovskii [16]
introduced the Berge equilibrium in the sense of Zhukovskii. These equilibria
can be used as an alternative solution when there is no Nash equilibrium, or
when there are many. In this equilibrium, each player obtains his maximum
payoff if the situation is favorable for him: by obligation or willingness, the
other players choose strategies favorable for him. The concepts of Nash and
Berge equilibria have been investigated by several authors as in [1-16], and
existence theorems as well as relationship between Nash and Berge equilibria
were explored in [4]. Indeed, in [1, 2, 3, 4], Abalo and Kostreva gave more
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general definitions of Berge equilibrium, and they provides theorems for the
existence of Berge equilibrium which is based on an earlier theorem of Radjef
[15]. However, their theorems are not sufficient for the existence of Berge
equilibrium. Next, Nessah et al. [13] provide some sufficient conditions that
overcome this problem, and give a valid proof for the existence theorem of Berge
equilibrium. Also, in a recent paper [7], Daghdak and Florenzano introduce
the best reply correspondence Γ−i for the complementary coalition I−{i}, and
they prove the existence theorem of a Berge strong equilibrium for the non-
cooperative game G = (Xi; fi)i∈I of normal form by applying the Kakutani-Fan
fixed point theorem.

In this paper, we first introduce a generalized concept of Berge strong equi-
librium for a generalized game G = (Xi;Ti, fi)i∈I of normal form, and using the
fixed point theorem due to Park in [14] for compact acyclic maps in admissi-
ble convex sets, we establish the existence theorem of generalized Berge strong
equilibrium for the game G with acyclic values. Our result is closely related to
earlier works of Daghdak and Florenzano [7] in several aspects. Also, we have
demonstrated by examples that our new approach is useful to produce general
Berge strong equilibria. Indeed, two generalized games G1 and G2 are given
such that G1 has both Nash equilibrium and generalized Berge strong equi-
librium; however, G2 can not have a generalized Berge strong equilibrium but
has a Nash equilibrium; on the other hand, the previous equilibrium existence
theorems in [1-16] can not be suitable for these games.

2. Preliminaries

We begin with some notations and definitions. If A is a nonempty set,
we shall denote by 2A the family of all subsets of A. If A is a subset of
a vector space, we shall denote by coA the convex hull of A. Let E be a
topological vector space and A, X be nonempty subsets of E. If T : A → 2E

and S : A → 2X are multimaps (or correspondences), then co T : A → 2E

and S ∩ T : A → 2X are correspondences defined by (co T )(x) = co T (x)
(S ∩ T )(x) = S(x) ∩ T (x) for each x ∈ A, respectively.

Let I = {1, 2, . . . , n} be a finite (or possibly countably infinite) set of players.
For each i ∈ I, Xi is a non-empty topological space as an action space, and
denote X−i := Πj∈I−{i}Xj . For an action profile x = (x1, . . . , xn) ∈ X =
Πi∈IXi, we shall write x−i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ X−i, and we may
simply write x = (x−i, xi) ∈ X−i ×Xi = X .

Now we recall basic definitions of continuities concerned with multimaps.
Let X,Y be nonempty topological spaces and T : X → 2Y be a multimap. A
multimap T : X → 2Y is said to be lower semicontinuous if for each x ∈ X and
each open set V in Y with T (x) ∩ V 6= ∅, there exists an open neighborhood
U of x in X such that T (y) ∩ V 6= ∅ for each y ∈ U ; and a multimap T :
X → 2Y is said to be upper semicontinuous if for each x ∈ X and each open
set V in Y with T (x) ⊂ V , there exists an open neighborhood U of x in X
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such that T (y) ⊂ V for each y ∈ U . And T is said to be continuous if T is
both lower semicontinuous and upper semicontinuous. It is also known that
T : X → 2Y is lower semicontinuous if and only if for each closed set V in Y ,
the set {x ∈ X | T (x) ⊂ V } is closed in X . If a multimap T : X → 2Y is upper
semicontinuous with closed values, then T has a closed graph. The converse is
true whenever Y is compact, e.g., see Aubin [5].

Recall that a nonempty topological space is acyclic if all of its reduced Čech
homology groups over rationals vanish. For nonempty subsets in a topological
vector space, we know the general implication that

convex ⇒ star-shaped ⇒ contractible ⇒ acyclic ⇒ connected,

and not conversely. For topological spaces X and Y , a multimap F : X → 2Y

is called an acyclic map whenever F is upper semicontinuous with compact
acyclic values. A nonempty subset X of a topological vector space E is said to
be admissible (in the sense of Klee) [14], if for every compact subset K of X
and every neighborhood V of the origin O of E, there exists a continuous map
h : K → X such that x − h(x) ∈ V for all x ∈ K, and h(K) is contained in a
finite dimensional subspace L of E.

Note that every nonempty convex subset of a locally convex topological
vector space is admissible. Other examples of admissible topological vector
spaces are lp and Lp(0, 1) for 0 < p < 1, the spaceM(0, 1) of equivalence classes
of measurable functions on [0, 1], and others. Note also that every compact
convex locally convex subset of a topological vector space is admissible. For
details, see [14] and references therein.

Assuming the acyclicity of best reply correspondence, and the admissible
(non-convex) pure strategy spaces, Park [14] proved an existence theorem of
Nash equilibrium for a generalized game G = (Xi;Ti, fi)i∈I by using his gener-
alization of the Eilenberg-Montgomery fixed point theorem.

The following is a basic tool for proving the existence of Berge strong equi-
librium, which is a particular form of Theorem 1 in [14]:

Lemma 2.1. Let I be a finite index set. For each i ∈ I, Xi is a nonempty

compact convex subset of a Hausdorff topological vector space Ei, and Ti : X =
Πj∈IXj → 2Xi is an acyclic map. If X is an admissible subset of E = Πi∈IEi,

then there exists a fixed point x̄ ∈ X for the multimap T = Πi∈ITi, i.e., x̄i ∈
Ti(x̄) for each i ∈ I.

3. A new model for a generalized Berge strong equilibrium

First, we recall some notions and terminologies on the generalized Berge
strong equilibrium for pure strategic games as in [7]. Let I = {1, 2, . . . , n}
be a finite (or possibly countably infinite) set of players. A non-cooperative
generalized game of normal form (also, a social system or an abstract economy) is
an ordered 3n-triple G = (Xi;Ti, fi)i∈I where for each player i ∈ I, Xi is a pure
strategy space for the player i, and the set X = Πn

i=1Xi, joint strategy space, is
the Cartesian product of the individual strategy spaces, and the element of Xi
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is called a strategy. And, fi :→ R is a payoff function (or utility function), and
Ti : X → 2X−i is a complementary constraint correspondence for the player i.

For each coalition K ⊂ I, we denote by −K the set {i ∈ I | i /∈ K} of
the coalition I − K. Recall that in a non-cooperative game of normal form
G = (Xi; fi)i∈I , a strategy profile x̄ ∈ X is a Nash equilibrium [11] for G if for
each i ∈ I,

fi(x̄−i, x̄i) ≥ fi(x̄−i, xi) for all xi ∈ Xi;

and for a more general equilibrium definition due to Berge, let R = {Ri}i∈M be
a partition of I and S = {Si}i∈M be a set of subsets of I. A feasible strategy
x̄ ∈ X is a Berge equilibrium [3], for G if for each m ∈ M and for any rm ∈ Rm,

frm(x̄−Sm
, x̄Sm

) ≥ frm(x̄−Sm
, xSm

) for all xSm
∈ XSm

.

Let us assume that Ri := {i} for all i ∈ I. Then it is clear that the family
R = {Ri}i∈I is a partition of the set of players I. If we let Si := I −{i} for all
i ∈ I, then the Berge equilibrium reduces to the Berge equilibrium in the sense
of Zhukovskii [16]. Indeed, note that Nash equilibrium is clearly a special case
of Berge equilibrium where M = I, Ri = {i}, and Si = I − {i} for all i ∈ M .

Next, we recall other equilibrium concepts which are related with the Nash
equilibrium and the Berge equilibrium. A strategy profile x̄ ∈ X is an equilib-

rium for a coalition K due to Berge [6] if for each xK ∈ XK and i ∈ K,

fi(x̄−K , x̄K) ≥ fi(x̄I−K , xK);

which means at the profile x̄ ∈ X the coalition K can not increase the payoffs
of any of its members. Next, a strategy profile x̄ ∈ X is called a Berge strong

equilibrium [7] for G if for each i ∈ I and for all j ∈ I − {i},

fj(x̄−i, x̄i) ≥ fj(x−i, x̄i) for all x−i ∈ X−i.

Thus, according to Berge [6], a Berge strong equilibrium is an equilibrium point
for all the coalition I−{i} for each i ∈ I, i.e., at a Berge strong equilibrium, no
coalition of type I − {i} can increase the payoffs of any of its members. Note
that Nash equilibrium is an equilibrium point for all coalition of type {i} only.
This shows that the Berge strong equilibrium enjoys a very strong stability
compared to the Nash equilibrium. For more details on the properties of the
Berge strong equilibrium, see Larbani and Nessah [10].

In other words, while at a Nash equilibrium, none of the players of the game
G have interest to modify his strategy, and at a strong Berge equilibrium, for
each player i, it is the complementary coalition which has no interest to deviate.
As we can see in Example 1 in [7], there exists a game G which has a Nash
equilibrium; but no one has a Berge strong equilibrium at all. As remarked in
[7], it is easily seen that a Berge strong equilibrium is a Nash equilibrium, and it
is obvious that they coincide in two person games, e.g., see [7, 9, 10]. However,
as we remarked, the Berge strong equilibrium enjoys a strong stability property
compared to the Nash equilibrium so that it is meaningful to find the sufficient
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conditions for the existence of a Berge strong equilibrium. Now we have the
following implication between these equilibria:

Berge strong equilibrium ⇒ Nash equilibrium ⇒ Berge equilibrium.

Next, we will introduce the following which generalizes the Berge strong
equilibrium by adopting the complementary constraint correspondences:

Definition 3.1. Let G = (Xi;Ti, fi)i∈I be a non-cooperative generalized game
of normal form. Then, a strategy n-tuple x̄ = (x̄1, . . . , x̄n) ∈ X is called a
generalized Berge strong equilibrium for the game G if for each i ∈ I and for all
j ∈ I − {i}, we have

x̄−i ∈ Ti(x̄) and fj(x̄−i, x̄i) ≥ fj(y−i, x̄i) for all y−i ∈ Ti(x̄).

Remarks. (1) In Definition 3.1, if Ti(x) := X−i for each x ∈ X and i ∈ I, then
the condition “x̄−i ∈ Ti(x̄)” is clearly satisfied. In this case, the generalized
Berge strong equilibrium for the game G reduces to the Berge strong equilibrium
in [7], or Berge equilibrium in the sense of Zhukovskii [16]. Also, our definition
is different from the Berge strong equilibrium for an abstract economy in [7].
Indeed, in Definition 2 of [7] or in Theorem 6 of [14], they assume that Ti :
X → 2Xi is a player’s (not complementary) constraint correspondence.

(2) We now give some comments on the generalized Berge strong equilibrium.
A generalized Berge strong equilibrium x̄ ∈ X means that when a player i plays
his strategy x̄i from the generalized Berge strong equilibrium x̄, he cannot
obtain a maximum payoff unless the remaining players I−{i} willingly (or are
obliged to) play the strategy x̄−i from the complementary constraint strategic
set Ti(x̄). In other words, if at least one of the players of coalition I − {i}
deviates from his equilibrium strategy, payoff of the player i in the resulting
strategy profile would be at most equal to his payoff fi(x̄) on the complementary
feasible constraint set Ti(x̄).

Throughout this paper, all topological spaces are assumed to be Hausdorff,
and for the other standard notations and terminologies, we shall refer to Aubin
[5], Daghdak and Florenzano [7], and the references therein.

4. Existence of a generalized Berge strong equilibrium

The utility of the player i resulting from the strategy x of actions is the real
number fi(x) where the function fi is assumed to be certain continuity and
convexity conditions relative to x. For any x̄ = (x̄−i, x̄i) ∈ X and i ∈ I, the
player i considers his fixed strategy x̄i, and the other players choose their strate-
gies x−i ∈ X−i so as to maximize his utility fj(x−i, x̄i) in his complementary
constraint strategy set Ti(x̄) ⊆ X−i for all j ∈ I − {i}.

For each i ∈ I and x = (x−i, xi) ∈ X , the best complementary response
strategy profile Mi(x) for the player i is defined by
(∗)

Mi(x) :=
⋂

j∈I−{i}

{

(y−i, ·) ∈ X
∣

∣ y−i ∈ Ti(x), fj(y−i, xi) = max
z∈Ti(x)

fj(z, xi)
}

.
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Then, for example, we should check the well-definedness of Mn(x) for the fixed
player n. For each x = (x−1, x1) = (x−2, x2) = · · · = (x−n, xn) ∈ X , we have
the following (n− 1) best complementary response profiles

{

(y−n, ·) ∈ X
∣

∣ y−n ∈ Tn(x), f1(y−n, xn) = max
z∈Tn(x)

f1(z, xn)
}

;

{

(y−n, ·) ∈ X
∣

∣ y−n ∈ Tn(x), f2(y−n, xn) = max
z∈Tn(x)

f2(z, xn)
}

;

· · ·
{

(y−n, ·) ∈ X
∣

∣ y−n ∈ Tn(x), fn−1(y−n, xn) = max
z∈Tn(x)

fn−1(z, xn)
}

;

and then, Mn(x) is equal to the intersection of the above (n − 1) best com-
plementary response profiles. Also, we note that each of the first best comple-
mentary response profiles is exactly the intersection of two strategy profiles
{

(y−n, ·) ∈ X
∣

∣ y−n ∈ Tn(x)
}

⋂

{

(y−n, ·) ∈ X
∣

∣ f1(y−n, xn)= max
z∈Tn(x)

f1(z, xn)
}

,

where the n-th component of strategy profile (y−n, ·) ∈ X is dummy so that
the intersection of two strategy sets in Xn is meaningless in some sense for the
player n to determine his/her best response strategies.

If we define a best complementary response correspondence M : X → 2X

by M(x) :=
⋂

i∈I Mi(x) for each x ∈ X , then we have:

Lemma 4.1. Let G = (Xi;Ti, fi)i∈I be a non-cooperative generalized game of

normal form, and a best complementary response correspondence M : X →
2X be given by M(x) =

⋂

i∈I Mi(x) for each x ∈ X. Assume that M(x) is

nonempty for each x ∈ X. If x̄ ∈ X is a fixed point for M , then x̄ is a

generalized Berge strong equilibrium for the game G.

Proof. Let x̄ ∈ X be a fixed point for M . Then for each i ∈ I, x̄ ∈ Mi(x̄) so
that for all j ∈ I − {i}, we have

x̄−i ∈ Ti(x̄) and fj(x̄−i, x̄i) = max
z∈Ti(x̄)

fj(z, x̄i);

which means that x̄ ∈ X is exactly a generalized Berge strong equilibrium for
the game G. �

Now we are ready to prove the existence theorem of generalized Berge strong
equilibrium as follow:

Theorem 4.2. Let I = {1, 2, . . . , n} be a finite set of players, and let G =
(Xi;Ti, fi)i∈I be a non-cooperative generalized game of normal form where Xi

is a nonempty compact convex strategy subset of the player i in a topological

vector space Ei. Assume that the joint strategy space X = Πi∈IXi = X−i ×Xi

is an admissible subset of E = Πi∈IEi, and suppose that for each i ∈ I,
(1) fi : X−i ×Xi → R is (jointly) continuous in X ;
(2) Ti : X−i × Xi → 2X−i is a closed correspondence in X such that each

Ti(x) is a nonempty subset of X−i;
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(3) Ti : X → 2X−i is lower semicontinuous in X ;
(4) Mi : X → 2X, defined by the equation (∗), is such that for each x ∈ X,

⋂

i∈I Mi(x) is nonempty acyclic.

Then there exists a generalized Berge strong equilibrium x̄ ∈ X for the game

G, i.e., for each i ∈ I and for all j ∈ I − {i},

x̄−i ∈ Ti(x̄) and fj(x̄−i, x̄i) ≥ fj(y−i, x̄i) for all y−i ∈ Ti(x̄).

Proof. For each i ∈ I, we define the best complementary response correspon-
dence Mi : X → 2X of the player i by for each x ∈ X ,

Mi(x) :=
⋂

j∈I−{i}

{

(y−i, ·) ∈ X
∣

∣ y−i ∈ Ti(x), fj(y−i, xi) = max
z∈Ti(x)

fj(z, xi)
}

.

Then, by the assumption (4), the best complementary response profile Mi(x)
is well-defined and nonempty for each x ∈ X .

Next, we define the best complementary response correspondence M : X →
2X by

M(x) :=
⋂

i∈I

Mi(x) for each x ∈ X.

Since each Mi(x) is exactly equal to the intersection of the (n− 1) best com-
plementary response profiles which is given by for j ∈ I − {i},
{

(y−i, ·) ∈ X
∣

∣ y−i ∈ Ti(x)
}

⋂

{

(y−i, ·) ∈ X
∣

∣ fj(y−i, xi)= max
z−i∈Ti(x)

fj(z−i, xi)
}

,

and the i-th component of strategy profile (y−i, ·) ∈ X is dummy, we have
that the first set

{

(y−i, ·) ∈ X
∣

∣ y−i ∈ Ti(x)
}

is equal to the compact set

Ti(x) × Xi. Since X−i = Πj∈I−{i}Xj is compact, and Ti : X → 2X−i is a
closed multimap, Ti is upper semicontinuous in X such that each Ti(x) is a
nonempty compact subset of X−i. By the assumptions (1)-(4), since Mi is the
intersection of the upper semicontinuous complementary response profiles, Mi

is also upper semicontinuous in X such that each Mi(x) is nonempty compact.
Indeed, since Ti is a continuous correspondence by the assumptions (2) and
(3), for each j ∈ I − {i}, the correspondence

φj : x 7→
{

(y−i, ·) ∈ X
∣

∣ fj(y−i, xi) = max
z∈Ti(x)

fj(z, xi)
}

has a closed graph in X × X by Theorem 3 in [5]. Thus, φj is upper semi-
continuous. Since Mi(x) =

⋂

j∈I−{i}

([

Tj(x) × Xj

]

∩ φj(x)
)

for each x ∈ X ,

Mi is the intersection of upper semicontinuous correspondences so that Mi

is also upper semicontinuous in X . Hence, the best complementary response
correspondence M(x) :=

⋂

i∈I Mi(x) is also upper semicontinuous in X . By
the assumption (4) again, M(x) is nonempty compact acyclic for each x ∈ X
so that M is an acyclic map in X . Therefore, by applying Lemma 2.1 to
the multimap M : X → 2X , there exists a fixed point x̄ ∈ X for M , i.e.,
x̄ ∈ M(x̄) =

⋂

i∈I Mi(x̄) for each i ∈ I. By Lemma 4.1, x̄ ∈ X is exactly the
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generalized Berge strong equilibrium for the game G, i.e., for each i ∈ I, and
for all j ∈ I − {i}, we have

x̄−i ∈ Ti(x̄) and fj(x̄−i, x̄i) ≥ fj(y−i, x̄i) for all y−i ∈ Ti(x̄);

which completes the proof. �

Remarks. (1) In Theorem 4.2, if Ti(x) := X−i for each x ∈ X , then the
assumptions (2) and (3) are automatically satisfied. In this case, the best
complementary response correspondence Mi for the player i is defined by

Mi(x) :=
⋂

j∈I−{i}

{

(y−i, ·) ∈ X
∣

∣ fj(y−i, xi) = max
z∈X−i

fj(z, xi)
}

for each x ∈ X.

Therefore, Theorem 4.2 is very different from Theorem 1 in [7] in the following
aspects:

(a) we do not need the locally convex assumption on Xi;
(b) we do not need the quasiconvex assumption on fi;
(c) we do need the assumption that “

⋂

i∈I Mi(x) is nonempty acyclic”
(2) In Theorem 4.2, if we assume that each Ti(x) is a convex subset of X−i,

and for each i ∈ I and for all j ∈ I − {i}, the function y−i 7→ fj(y−i, xi) is
quasiconcave for any fixed xi ∈ Xi, then we can see that the set
{

(y−i, ·) ∈ X
∣

∣ y−i ∈ Ti(x)
}

⋂

{

(y−i, ·) ∈ X
∣

∣ fj(y−i, xi) = max
z∈Ti(x)

fj(z, xi)
}

is convex for each x ∈ X so that Mi(x) is convex. Therefore, the acyclic
assumption (4) on Mi(x) in Theorem 4.2 can be deleted without affecting the
conclusion.

(3) By defining the best complementary response correspondence Mi for
the player i as in Theorem 4.2, we can generalize Theorem 1 in [7] in a non-
cooperative generalized game G = (Xi;Ti, fi)i∈I of normal form by modifying
the proof of Theorem 1.

5. Two examples of non-cooperative generalized games

First, we will give an example of generalized game which has a generalized
Berge strong equilibrium, and hence the game has also a Nash equilibrium as
follow:

Example 5.1. Let I = {1, 2} be a set of two players. Let G1 = (Xi;Ti, fi)i∈I

be a generalized game such that for each i ∈ I, Xi := [0, 1] is a nonempty
compact convex subset of R and the payoff function fi : X = X1 × X2 → R,
and a continuous complementary constraint correspondence Ti : X → 2X−i are
defined as follow: For each (x1, x2) ∈ X ,

f1(x1, x2) := x2
1 + x2, f2(x1, x2) := x1 x

2
2,

T1(x1, x2) := X2, T2(x1, x2) := X1.

Then the action sets Xi and X−i are compact convex, and equal to [0, 1], and
every payoff functions fi are clearly continuous. Also it is easy to see that
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f1(x1, x2) is linear (quasiconcave) in the variable x2 but not quasiconcave in
the variable x1, and f2(x1, x2) is linear (quasiconcave) in the variable x1 but not
quasiconcave in the variable x2 so that we can not directly apply the existence
theorem of Nash equilibrium for the game G1. However, we can apply Theorem
4.2 to G1 so that we can obtain a generalized Berge strong equilibrium for the
game G1. Indeed, for each x = (x1, x2) ∈ X1 ×X2,

M1(x1, x2) =
{

(·, v) ∈ X
∣

∣ v ∈ T1(x), f2(x1, v) = max
y′∈T1(x)

f2(x1, y
′) = x1

}

=
{

(a, 1)
∣

∣ a ∈ [0, 1]
}

;

M2(x1, x2) =
{

(u, ·) ∈ X
∣

∣ u ∈ T2(x), f1(u, x2) = max
x′∈T2(x)

f1(x
′, x2) = 1 + x2

}

=
{

(1, b)
∣

∣ b ∈ [0, 1]
}

,

so that for each x ∈ X1 ×X2, M(x) := M1(x) ∩M2(x) = {(1, 1)} is nonempty
acyclic. Therefore, all the assumptions of Theorem 4.2 are satisfied so that we
obtain a generalized Berge strong equilibrium {(1, 1)} for the game G1. In fact,
1 ∈ T1(1, 1) = T2(1, 1), and

2 = f1(1, 1) ≥ f1(1, x2) = 1 + x2 for all x2 ∈ X2;

1 = f2(1, 1) ≥ f2(x1, 1) = x1 for all x1 ∈ X1.

Furthermore, the generalized Berge strong equilibrium {(1, 1)} is also a Nash
equilibrium for the game G1. Indeed, 1 ∈ T1(1, 1) = T2(1, 1), and

2 = f1(1, 1) ≥ f1(x1, 1) = x2
1 + 1 for all x1 ∈ X1;

1 = f2(1, 1) ≥ f2(1, x2) = x2
2 for all x2 ∈ X2.

Indeed, Example 5.1 shows that our Theorem 4.2 is useful tool for finding
a Nash equilbrium whenever a given game G = (Xi; fi)i∈I is not satisfied
the assumptions on the existence theorem of Nash equilibrium for the game
G. However, we can show that there must exist a Nash equilibrium for G by
taking the generalized Berge strong equilibrium for the game G.

Next, we will give an example which show that a game G2 has a Nash
equilibrium, but the game can not have a generalized Berge strong equilibrium
as follow:

Example 5.2. Let I = {1, 2, 3} be a set of three players. Let G2=(Xi;Ti, fi)i∈I

be a generalized game such that for each i ∈ I, Xi := [0, 1] is a nonempty com-
pact convex subset of R and the payoff function fi : X = X1 ×X2 ×X3 → R,
and a continuous complementary constraint correspondence Ti : X → 2Xi are
defined as follow: For each (x, y, z) ∈ X ,

f1(x, y, z) := x− z2, f2(x, y, z) := x3 + yz, f3(x, y, z) := y + z;

T1(x, y, z) := X1, T2(x, y, z) := X2, T3(x, y, z) := X3.

(for a generalized Berge strong equilibrium case, we may assume

T1(x, y, z) := X2 ×X3, T2(x, y, z) := X1 ×X3, T3(x, y, z) := X1 ×X2.)
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Then the action sets Xi are compact and convex, and every payoff functions fi
are clearly continuous. Also it is easy to see that f1(x, y, z) is linear (concave)
in the variable x, and quasiconcave in the variable (y, z), f2(x, y, z) is linear
(concave) in the variable y, but not quasiconcave in the variable (x, z), and
f3(x, y, z) is linear (concave) in the variable z, and linear (concave) in the
variable (x, y) so that we can not directly apply the existence theorem (Theorem
4.2) of Berge strong equilibrium for the game G2. However, we can apply the
existence theorem of Nash equilibrium for the game G2 (e.g., Theorem 6 in
[14]) so that there exits a Nash equilibrium {(1, 1, 1)} for the game G2. In fact,
1 ∈ T1(1, 1, 1) = T2(1, 1, 1) = T3(1, 1, 1) = [0, 1], and

0 = f1(1, 1, 1) ≥ f1(x, 1, 1) = x− 1 for all x ∈ X1,

2 = f2(1, 1, 1) ≥ f2(1, y, 1) = 1 + y for all y ∈ X2,

2 = f3(1, 1, 1) ≥ f3(1, 1, z) = 1 + z for all z ∈ X3.

However, there can not exist a generalized Berge strong equilibrium for
this game G2. Indeed, suppose that there exists a generalized Berge strong
equilibrium (x̄, ȳ, z̄) ∈ X for the game G2. Then, in particular, for the player
2, we must have

x̄− z̄2 = f1(x̄, ȳ, z̄) ≥ f1(x, ȳ, z) = x− z2 for all (x, z) ∈ X1 ×X3,

ȳ + z̄ = f3(x̄, ȳ, z̄) ≥ f3(x, ȳ, z) = ȳ + z for all (x, z) ∈ X1 ×X3;

which implies the following inequalities

x̄− z̄2 ≥ x− z2, ȳ + z̄ ≥ ȳ + z

must hold for all (x, z) ∈ [0, 1]× [0, 1]. From the first inequality, we have x̄ = 1
and z̄ = 0 so that the second inequality “ȳ + z̄ ≥ ȳ + z” can not be true.
Therefore, there can not exist a generalized Berge strong equilibrium for the
game G2.

Indeed, Example 5.2 shows that the generalized Berge strong equilibrium
for the game G is a more delicate concept than a Nash equilbrium for the game
G. Anyway, a generalized Berge strong equilibrium and a Nash equilbrium for
the game G are very useful concepts to analyze and find optimal strategies for
all the players of the game.
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