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POSITIVELY MEASURE EXPANSIVE AND EXPANDING

Jiweon Ahn, Keonhee Lee, and Manseob Lee

Abstract. We show that C1-generically, a differentiable map is posi-
tively measure expansive if and only if it is expanding.

1. Introduction

Let M be a compact connected C∞ Riemannian manifold without bound-
ary and C1(M) the space of differentiable maps of M endowed with the C1-
topology. Denote by d the distance on M induced from the Riemannian metric
‖ · ‖ on the tangent bundle TM. Given x ∈ M and δ > 0, define the dynamical

δ-ball, Γδ(x) = {y ∈ M : d(f i(x), f i(y)) ≤ δ for all i ≥ 0}. Let µ be a Borel
probability measure which is not necessary f -invariant. Let f ∈ C1(M). We
say that f is positively measure expansive (or, positively µ-expansive) if there is
δ > 0 (called expansive constant) such that for all x ∈ M , µ(Γδ(x)) = 0. It is
known that if f is positively expansive, then f is open and locally one-to-one,
that is, f is a local homeomorphism since M is a manifold without boundary.
Since M is connected, it can be checked that the set of periodic points, P (f),
of f is dense (see [4]).

We say that f is expanding if there are constants C > 0 and λ > 1 such
that for any v ∈ TxM(x ∈ M), ‖Dxf

n(v)‖ ≥ Cλn‖v‖ for any n ≥ 0. It
is known that every expanding map is positively measure expansive, but the
converse is not true. Since every expanding map f is structurally stable, there
is a C1-neighborhood U(f) of f such that any g ∈ U(f) is positively measure
expansive. Sakai [4] and Arbieto [1] proved that C1-generically, a positively
expansive map is expanding. In this paper, we study the space of positively
measure expansive differentiable maps of M .

A subset R ⊂ C1(M) is called residual if it contains a countable intersection
of open and dense subsets of C1(M). A property is called (C1)generic if it
holds in a residual subset of C1(M). Recall that a positively measure expan-
sive differentiable map is not necessarily expanding. However, every positively

Received July 8, 2013; Revised October 30, 2013.
2010 Mathematics Subject Classification. 37D20.
Key words and phrases. expansive, measure expansive, generic, expanding.

c©2014 Korean Mathematical Society

345



346 J. AHN, K. LEE, AND M. LEE

measure expansive differentiable map is expanding in the C1-generic case. The
following is the main result in this paper.

Theorem 1.1. For C1-generic f ∈ C1(M), f is positively measure expansive

if and only if f is expanding.

2. Proof of Theorem 1.1

Let M be as before and let f ∈ C1(M). Hereafter, we denote by U(f) a
C1-neighborhood of f ∈ C1(M).

Lemma 2.1. Let f ∈ C1(M) and U(f) be given. Then there are δ0 > 0
and U0(f) ⊂ U(f) such that for any g ∈ U0(f), a finite set {x1, x2, . . . , xl},
a neighborhood U of {x1, x2, . . . , xl} and linear maps Li : Txi

M → Tg(xi)M

satisfying ‖Li − Dxi
g‖ ≤ δ0 for all 1 ≤ i ≤ l, there are ǫ0 > 0 and g ∈ U(f)

such that

(a) g(x) = g(x) if x ∈ M\U , and

(b) g(x) = expg(xi) ◦Li ◦ exp
−1
xi

(x) if x ∈ Bǫ0(xi) for all 1 ≤ i ≤ l.

The assertion (b) implies that g(x) = g(x) for x ∈ {x1, x2, . . . , xl}, and that
Dxi

g = Li for all 1 ≤ i ≤ l.
For p ∈ P (f), denote by π(p) > 0 the period, that is, fπ(p)(p) = p. We

say that p is hyperbolic if Dpf
π(p) : TpM → TpM has no eigenvalues of mod-

ulus 1. Thus TpM splits into the direct sum Es
p ⊕ Eu

p of subspaces such that

Dpf
π(p)(Es

p) = Es
p and Dpf

π(p)(Eu
p ) = Eu

p , and there are constants C > 0, and
0 < λ < 1 such that for any n > 0,

- ‖ Dpf
n(v) ‖≤ Cλn ‖ v ‖ for any v ∈ Es

p, and

- ‖ Dpf
−n(v) ‖≤ Cλn ‖ v ‖ for any v ∈ Eu

p .

Let p ∈ P (f) be hyperbolic. We say that p is a sink if TpM = Es
p, a

source if TpM = Eu
p , and a saddle if Es

p 6= {0} and Eu
p 6= {0}. Note that

if f is positively measure expansive with an expansive constant δ, then there
are no sinks and saddles. For, if there is an eigenvalue λ with |λ| < 1, then
there is a local stable manifold W s

ν (p) of p for some ν > 0, where W s
ν (p) =

{y ∈ M : d(f i(p), f i(y)) ≤ ν, i ≥ 0} = Γν(p). We may assume that ν < δ.
Then W s

ν (p) = Γν(p) ⊂ Γδ(p) implies that 0 < µ(W s
ν (p)) < µ(Γδ(p)). This is

contradiction, since f is positively measure expansive.
For 0 < δ < 1, we say that a hyperbolic periodic point p has a δ-weak

expanding eigenvalue if Dpf
π(p) has an eigenvalue λ such that |λ| < (1 +

δ)π(p). Hence because f has a δ-weak expanding eigenvalue we mean f has

no hyperbolic periodic point with a δ-weak expanding eigenvalue. Moreover, we
say that the periodic point has real spectrum if all of its eigenvalues are real
and simple spectrum if all of its eigenvalues have multiplicity one. Note that
by Kupka-Smale’s theorem for differentiable maps, for C1-generic f ∈ C1(M),
every p ∈ P (f) is hyperbolic, and thus, such p is source if f is positively
measure expansive.
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Lemma 2.2. There is a residual set G1 ⊂ C1(M) such that for any f ∈ G1,

and for any δ > 0, if for any C1-neighborhood U(f) of f , there is g ∈ U(f)
having qg ∈ P (g) with a δ-weak expanding eigenvalue, then f has q ∈ P (f)
with a δ-weak expanding eigenvalue.

Proof. Let q ∈ P (f) be hyperbolic. Then for any g ∈ C1(M) C1-nearby f ,
there is a unique qg ∈ P (g)(π(q) = π(qg)) nearby q such that Dqgg

π(qg) →

Dqf
π(q) as g → f with respect to the C1-topology. For δ > 0 and n ∈ N,

let Hn be the set of f ∈ C1(M) such that there is q ∈ P (f) with a δ-weak
expanding eigenvalue. From the stability of the hyperbolic periodic point stated
above, Hn is open in C1(M). Let Nn = C1(M)\Hn. Since Hn ∪ Nn is open
and dense in C1(M) by their definitions,

G1 =
⋂

n∈N

(Hn ∪ Nn)

is residual. Here N denotes the set of natural numbers.
We show that G1 is what we want. Fix any f ∈ G1 and any δ > 0. Suppose

that for any U(f), there is g ∈ U(f) having qg ∈ P (g) with a δ-weak expanding

eigenvalue. Then f ∈ Hn, and so f ∈ Hn. �

The following was proved by Sakai (see [4, Remark 1]).

Remark 2.3. There is a residual set G2 ⊂ C1(M) such that for any f ∈ G2,

by Lemma 2.2 for any δ > 0, if any q ∈ P (f) has no 2δ-weak eigenvalue,

then there is U(f) such that for any g ∈ U(f), any q ∈ P (g) has no δ-weak

eigenvalue.

To prove Lemma 2.4, we give some notations on probability measures of M .
Denote by M(M) the set of Borel probability measures of M endowed with
the weak topology, and Mf (M) ⊂ M(M) the set of f -invariant measures.
We say that µ ∈ M(M) is atomic if there exists a point x ∈ M such that
µ({x}) > 0. It is known that the set of non-atomic measures is a residual
set in M(M). Note that for f ∈ C1(M), a submanifold V ⊂ M is said to
be a normally hyperbolic invariant submanifold if f(V ) = V and if there is a
splitting TxM = TxV ⊕Ns

x ⊕Nu
x for each x ∈ V such that

- the splitting depends continuously on x,
- the splitting is invariant under Df , i.e., Df(Ns

x) = Ns
f(x) and Df(Nu

x ) =

Nu
f(x),

- for some Riemannian metric, and constants C > 0, λ > 1, r ≥ 1, one has
for every triple of unit vectors v ∈ Tx(V ), ns ∈ Ns

x , and nu ∈ Nu
x and any n > 0

‖(Dfn)nu‖

‖(Dfn)v‖
≥ Cλn and

‖(Dfn)ns‖

‖(Dfn)v‖
≤ C−1λ−n.

By Mañé’s [2] result, the normally hyperbolic V is persistence.
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Lemma 2.4. There is a residual set G3 ⊂ C1(M) such that for any f ∈ G3, if

f is positively measure expansive, then there is δ > 0 such that f has no δ-weak

expanding eigenvalue.

Proof. Let f ∈ G3 = G1 ∩ G2 be positively measure expansive. To induce the
contradiction, suppose that for any δ > 0 there is a periodic point p ∈ P (f) with
a δ-weak expanding eigenvalue. Since δ is arbitrary small, by Lemma 2.1, we
can construct g1 ∈ U(f) possessing a non hyperbolic periodic point q. Assume

that Dqg
π(q)
1 has an eigenvalue λ with modulus equal to 1. Let Ec

q be the
subspace of TqM generated by eigenvectors corresponding to the eigenvalues
λ with |λ| = 1. Then we have TqM = Ec

q ⊕ Eu
q . For simplicity, we assume

that dimEc
q = 1 and the corresponding eigenvalue λ = 1. Then by Lemma 2.1,

we can choose ǫ1 > 0 and construct g2 ∈ U(f) satisfying the conditions of the
Lemma 2.2. Since λ = 1, there exists a small arc Kq ⊂ Bǫ1(q) ∩ exp(Ec

q(ǫ1))

with its center at q such that g
π(q)
2 (Kq) = Kq and Kq is nomally hyperbolic.

Then by Mañe’s result [2], Kq is persistence. Thus, f has an arc Jp such that

fπ(p)(Jp) = Jp.
Let MJp

be the normalized Lebesgue measure on Jp. Define µ ∈ Mf(M)
by

µ(c) =
1

π(p)

π(p)−1∑

j=0

MJp
[f−j(C ∩ f j(Jp))]

for any Borel set C of M . It is clear that µ is a non-atomic measure.
Let δ > 0. By the continuity of f , there exists δ1 > 0 such that d(p, y) < δ1

implies that d(f i(p), f i(y)) < δ for 0 ≤ i ≤ π(p)− 1. Recall that

Γδ(x) = {y ∈ M : d(f i(x), f i(y)) ≤ δ for all i ≥ 0}.

Since fπ(p)|Jp
= Jp,

{y ∈ Jp : d(p, y) < δ1} ⊂ Γδ(p).

Thus, we have

µ(Γδ(p)) ≥ µ({y ∈ Jp : d(p, y) < δ1}) > 0.

This is the contradiction for the our assumption, f is positively measure ex-
pansive. �

The following theorem founded by Arbieto [1, Theorem 1.3] and Sakai [4,
Remark 1].

Theorem 2.5. For C1-local diffeomorphism f , if the periodic orbits of any

local diffeomorphism g C1-close to f , are expanding, then f is expanding.

Proof of Theorem 1.1. Let f ∈ G3 be positively measure expansive. To derive
a contradiction, we may assume that f is not expanding. Then by Theorem
2.5, for any δ > 0, there is pg ∈ P (g)(g C1-close to f) such that pg has a δ-weak
expanding eigenvalue. Since f ∈ G1, f has p ∈ P (f) with δ-weak expanding
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eigenvalue. This is a contradiction by Lemma 2.4. Thus by Theorem 2.5, f is
expanding. �
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