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FURTHER EXPANSION AND SUMMATION FORMULAS

INVOLVING THE HYPERHARMONIC FUNCTION

Sebastien Gaboury

Abstract. The aim of the paper is to present several new relationships

involving the hyperharmonic function introduced by Mezö in (I. Mezö,
Analytic extension of hyperharmonic numbers, Online J. Anal. Comb.

4, 2009) which is an analytic extension of the hyperharmonic numbers.
These relations are obtained by using some fractional calculus theorems

as Leibniz rules and Taylor like series expansions.

1. Introduction

In 1996, Conway and Guy [2] defined the notion of hyperharmonic numbers.
The n-th hyperharmonic number of order r is defined recursively for r a positive
integer greater that 1 by

H(r)
n =

n∑
k=1

H(r−1),(1.1)

where H
(1)
n := Hn denotes the n-th harmonic number given by the n-th partial

sum of the harmonic series:

Hn =

n∑
k=1

1

k
.(1.2)

These numbers can be expressed by the binomial coefficients as well as by the
ordinary harmonic numbers as follows

H(r)
n =

(
n+ r − 1

r − 1

)
(Hn+r−1 −Hr−1) .(1.3)

Very interesting combinatorial properties of these numbers have been investi-
gated by many authors [1, 10, 11].
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Recently, Mezö [10] obtained an analytic extension of the hyperharmonic
numbers. Using the fact that, for integers n,

Hn−1 = Ψ(n)− γ,(1.4)

where γ = 0, 577215 · · · is the Euler-Mascheroni constant and Ψ(z) denotes
the digamma function defined by the logarithmic derivative of the celebrated
gamma function

Ψ(z) =
d

dz
log(Γ(z)) =

Γ′(z)

Γ(z)
,(1.5)

we can rewrite (1.3) as

H(r)
n =

(n)r
nΓ(r)

(Ψ(n+ r)−Ψ(r)) ,(1.6)

where (x)n is the Pochhammer symbol

(x)n =
Γ(x+ n)

Γ(x)
= x(x+ 1) · · · (x+ n− 1).(1.7)

Finally, since the gamma and digamma functions are analytic except for poles
at z ∈ Z− = {0,−1,−2, . . .}, Mezö extended the hyperharmonic numbers as
follows:

Definition 1.1. The hyperharmonic function H
(β)
α is defined by

H(β)
α :=

Γ(α+ β)

Γ(α+ 1)Γ(β)
(Ψ(α+ β)−Ψ(β))(1.8)

with α+ β ∈ C \ Z−0 .

In this paper, we make use of fractional derivatives techniques to obtain
further interesting new relationships involving the hyperharmonic function. In
Section 2, we introduce the Pochhammer based representation for fractional
derivatives and we express the hyperharmonic in terms of fractional derivative
operator. Next, we recall some important theorems as the generalized Leib-
niz rules as well as their integral analogue and the Taylor like power series
expansions. Finally, in Section 4, we provide ten new results involving the
hyperharmonic functions.

2. Pochhammer contour integral representation for fractional
derivative

The use of contour of integration in the complex plane provides a very pow-
erful tool in both classical and fractional calculus. The most familiar represen-
tation for fractional derivative of order α of zpf(z) is the Riemann-Liouville
integral [3, 9, 20] that is

Dαz zpf(z) =
1

Γ(−α)

∫ z

0

f(ξ)ξp(ξ − z)−α−1dξ,(2.1)
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which is valid for Re(α) < 0, Re(p) > 1 and where the integration is done along
a straight line from 0 to z in the ξ-plane. By integrating by part m times, we
obtain

Dαz zpf(z) =
dm

dzm
Dα−mz zpf(z).(2.2)

This allows to modify the restriction Re(α) < 0 to Re(α) < m [20]. Another
used representation for the fractional derivative is the one based on the Cauchy
integral formula widely used by Osler [13, 14, 15, 16]. These two representations
have been used in many interesting research papers. It appears that the less
restrictive representation of fractional derivative according to parameters is the
Pochhammer’s contour definition introduced in [22, 23].

Definition 2.1. Let f(z) be analytic in a simply connected region R. Let
g(z) be regular and univalent on R and let g−1(0) be an interior point of R
then if α is not a negative integer, p is not an integer, and z is in R−{g−1(0)},
we define the fractional derivative of order α of g(z)pf(z) with respect to g(z)
by

Dα
g(z)g(z)pf(z)(2.3)

=
e−iπpΓ(1 + α)

4π sin(πp)

∫
C(z+,g−1(0)+,z−,g−1(0)−;F (a),F (a))

f(ξ)g(ξ)pg′(ξ)

(g(ξ)− g(z))α+1
dξ.

For non-integer α and p, the functions g(ξ)p and (g(ξ)− g(z))−α−1 in the inte-
grand have two branch lines which begin respectively at ξ = z and ξ = g−1(0),
and both pass through the point ξ = a without crossing the Pochhammer con-
tour P (a) = {C1 ∪ C2 ∪ C3 ∪ C4} at any other point as shown in Figure 1.
F (a) denotes the principal value of the integrand in (2.3) at the beginning and
ending point of the Pochhammer contour P (a) which is closed on Riemann
surface of the multiple-valued function F (ξ).

Remark 2.2. In Definition 2.1, the function f(z) must be analytic at ξ = g−1(0).
However it is interesting to note here that we could also allow f(z) to have an
essential singularity at ξ = g−1(0), and the equation (2.3) would still be valid.

Remark 2.3. The Pochhammer contour never crosses the singularities at ξ =
g−1(0) and ξ = z in (2.3), then we know that the integral is analytic for all p
and for all α and for z inR−{g−1(0)}. Indeed, the only possible singularities of
Dα
g(z)g(z)pf(z) are α = −1,−2, . . . , and p = 0,±1,±2, . . . which can directly

be identified from the coefficient of the integral (2.3). However, integrating by
parts N times the integral in (2.3) by two different ways, we can show that
α = −1,−2, . . . , and p = 0, 1, 2, . . . are removable singularities (see [23]).

It is well known that [12, p. 83, Equation (2.4)]

Dα
z z

p =
Γ(1 + p)

Γ(1 + p− α)
zp−α (Re(p) > −1),(2.4)
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Figure 1. Pochhammer’s contour

but adopting the Pochhammer based representation for the fractional derivative
this last restriction becomes p not a negative integer.

Another well known formula for fractional derivatives [5, vol. 2, pp. 185–200]
is given by

Dα
z z

p log z =
Γ(1 + p)

Γ(1 + p− α)
zp−α (log z + Ψ(1 + p)−Ψ(1 + p− α))(2.5)

which holds for p ∈ C \ Z− and α, β ∈ C.
Setting p = α+β−1, dividing by Γ(α+1) and putting z = 1 after operation

in the previous formula gives

Dα
z z

α+β−1 log z
∣∣
z=1

Γ(α+ 1)
=

Γ(α+ β)

Γ(α+ 1)Γ(β)
(Ψ(α+ β)−Ψ(β)) ,(2.6)

where α+ β ∈ C \ Z− and α, β ∈ C.
We thus obtain the following very useful fractional derivative representation

for the generalized hyperharmonic function H
(β)
α

H(β)
α =

Dα
z z

α+β−1 log z
∣∣
z=1

Γ(α+ 1)
(2.7)

which holds for α+ β ∈ C \ Z− and α, β ∈ C.

3. Generalized Leibniz rules, Taylor-like expansions and a general
expansion involving fractional derivatives

In this section, we recall many fundamental theorems related to fractional
calculus that will play central roles in this work. These theorems consist in
generalized Leibniz rules and their integral analogue and Taylor-like expansions
in terms of different types of functions. First of all, let us begin by stating a
theorem obtained in 1971 by Osler [17].
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Theorem 3.1. Let u(z) and v(z) be analytic in the simply connected region
R. Let 0 be an interior point of R. Then, for z ∈ R− {0}, 0 < a ≤ 1, α ∈ C,
α not a negative integer and µ ∈ C, the following generalized Leibniz rule

(3.1) Dα
z u(z)v(z) = a

∞∑
n=−∞

(
α

µ+ an

)
Dα−µ−an
z u(z)Dµ+an

z v(z)

holds true.

Osler also proved that it is permitted to take the limit as a→ 0 in (3.1). By
this way, he found the integral analogue of the generalized Leibniz rule.

Theorem 3.2. Assume the hypothesis of Theorem 3.1. Then the following
integral analogue of the generalized Leibniz rule holds true

(3.2) Dα
z u(z)v(z) =

∫ ∞
−∞

(
α

µ+ ω

)
Dα−µ−ω
z u(z)Dµ+ω

z v(z)dω.

Recently, Tremblay et al. obtained a new generalized Leibniz rule for frac-
tional derivatives by making use of the properties of the Pochhammer based
representation for fractional derivatives [25, 26]. Explicitly, they proved the
following theorem:

Theorem 3.3. Let R be a simply connected region containing the origin. Let
u(z) and v(z) satisfy the conditions of Definition 2.1 for the existence of the
fractional derivative. Let U ⊂ R being the region of analyticity of the function
u(z) and V ⊂ R being the one for the function v(z). Then for z 6= 0, z ∈ U ∩V,
Re(1− β) > 0 the following product rule holds

Dα
z z

α+β−1u(z)v(z)(3.3)

=
z sin(βπ)Γ(1 + α) sin(µπ) sin((α+ β − µ)π)

sin((α+ β)π) sin((β − µ− ν)π) sin((µ+ ν)π)

·
∞∑

n=−∞

Dα+ν+1−n
z zα+β−µ−1−nu(z)D−1−ν+nz zµ−1+nv(z)

Γ(2 + α+ ν − n)Γ(−ν + n)
.

They also proved the following integral analogue.

Theorem 3.4. Assume the hypothesis of Theorem 3.3. Then the following
integral analogue of (3.3) holds

Dα
z z

α+β−1u(z)v(z)(3.4)

=
z sin(βπ)Γ(1 + α)

sin((α+ β)π) sin((β − µ− ν)π) sin((µ+ ν)π)

·
∫ ∞
−∞

sin((µ+ ω)π) sin((α+ β − µ− ω)π)

Γ(2 + α+ ν − ω)Γ(−ν + ω)

·Dα+ν+1−ω
z zα+β−µ−1−ωu(z)D−ν−1+ωz zµ−1+ωv(z)dω.
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Now let us shift our focus on some theorems involving Taylor like power
series expansions. We begin by giving two results obtained by Osler [17, 18].

Theorem 3.5. Let f(z) be an analytic function in a simply connected region
R. Let α, γ be two arbitrary complex numbers and θ(z) = (z − z0)q(z) with
q(z) a regular and univalent function without zero in R. Let a be a positive
real number and K = 0, 1, . . . , [c], [c] being the largest integer not greater than
c. Let b, z0 be two points in R such that b 6= z0 and let ω = exp(2πi/a). Then
the following relationship∑

k∈K

c−1ω−γkf(θ−1(θ(z)ωk))(3.5)

=

∞∑
n=−∞

Dcn+γ
z−b [f(z)θ

′
(z)[(z − z0)/θ(z)]cn+γ+1]|z=z0θ(z)cn+γ

Γ(cn+ γ + 1)

holds true for |z − z0| = |z0|.

In particular, if 0 < c ≤ 1 and θ(z) = (z − z0), then K = 0 and the formula
(3.5) reduces to

f(z) = c

∞∑
n=−∞

Dcn+γ
z−b f(z)

∣∣
z0

(z − z0)cn+γ

Γ(cn+ γ + 1)
.(3.6)

This last formula is usually called the Taylor-Riemann formula and has been
studied in several papers [6, 7, 15, 19, 27].

Theorem 3.6. Assuming the hypotheses of Theorem 3.5. Then the following
integral analogue of Taylor series for fractional derivatives

f(z) =

∫ ∞
−∞

Dω+γ
z−b f(z)

∣∣
z0

(z − z0)ω+γ

Γ(ω + γ + 1)
dω.(3.7)

holds true.

Recently, Tremblay et al. [26] obtained the power series of an analytic func-
tion f(z) in terms of the rational expression ( z−z1z−z2 ) where z1 and z2 are two

arbitrary points inside the region of analyticity R of f(z). In particular, they
proved the next theorem.

Theorem 3.7. Let c be real and positive and let ω = e2πi/c. Let f(z) be
analytic in the simply connected region R with z1 and z2 being interior point
of R. Let the set of curves {C(t)| 0 < t ≤ r}, C(t)⊂ R, defined by

(3.8) C(t) = C1(t) ∪ C2(t) =
{
z
∣∣ | λt(z1, z2; z)| = | λt(z1, z2; (z1 + z2)/2)|

}
,

where
(3.9)
λt(z1, z2; z) = [z − (z1 + z2)/2 + t(z1 − z2)/2] [z − (z1 + z2)/2− t(z1 − z2)/2] ,

which are lemniscates of Bernoulli type with center located at (z1 + z2)/2 and
with double-loops; one loop C1(t) leads around the focus point (z1 + z2)/2 +
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t(z1 − z2)/2 and the other loop C2(t) encircles the focus point (z1 + z2)/2 −
t(z1 − z2)/2, for each t such that 0 < t ≤ r. Let ((z − z1)(z − z2))λ =
exp{ λ ln (θ((z − z1)(z − z2)))} denote the principal branch of that function
which is continuous and inside C(r), cut by the respective two branch lines L±
defined by

(3.10) L± =

{{
z
∣∣ z = (z1 + z2)/2± t(z1 − z2)/2

}
, for 0 ≤ t ≤ 1;{

z
∣∣ z = (z1 + z2)/2± it(z1 − z2)/2

}
, for t < 0.

such that ln((z−z1)(z−z2)) is real where ((z−z1)(z−z2)) > 0. Let f(z) satisfies
the conditions of Definition 2.1 for the existence of the fractional derivative
of (z − z2)pf(z) of order α for z ∈ R − {L+ ∪ L−}, noticed by Dα

z−z2(z −
z2)pf(z) where α and p are real or complex numbers. Let K =

{
k
∣∣ k ∈

N and arg (λt(z1, z2, (z1 + z2)/2)) < arg (λt(z1, z2, (z1 + z2)/2)) + 2πk/a <
arg (λt(z1, z2, (z1 + z2)/2)) + 2π

}
. Then for arbitrary complex numbers µ, ν,

γ and for z on C1(1) defined by ξ = z1+z2
2 + z1−z2

2

√
1 + eiθ, −π < θ < π, we

have

∑
k∈K

c−1 ω−γk f
(
φ−1(φ(z)ωk)

) (
φ−1(φ(z)ωk)− z1

)ν (
φ−1(φ(z)ωk)− z2

)µ
(z1 − z2)

(3.11)

=

∞∑
n=−∞

eiπc(n+1) sin((µ+ cn+ γ)π) D−ν+cn+γz−z2 (z − z2) µ+cn+γ−1 f(z)
∣∣
z=z1

sin((µ− c+ γ)π)Γ(1− ν + cn+ γ)
φ(z)cn+γ,

where φ(z) =
(
z−z1
z−z2

)
.

The case 0 < c ≤ 1 reduces to

c−1 f(z)(z − z1)ν(z − z2)µ

(z1 − z2)
(3.12)

=

∞∑
n=−∞

eiπc(n+1) sin((µ+ cn+ γ)π)

sin((µ− c+ γ)π)Γ(1− ν + cn+ γ)

× D−ν+cn+γz−z2 (z − z2) µ+cn+γ−1 f(z)
∣∣
z=z1

(
z − z1
z − z2

)cn+γ
.

Finally, in 2007, Tremblay and Fugère [24] obtained the power series of an
analytic function f(z) in terms of arbitrary function (z − z1)(z − z2) where
z1 and z2 are two arbitrary points inside the analyticity region R of f(z).
Explicitly, they found the following relationship.
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Figure 2. Multi-loops contour

Theorem 3.8. Assuming the assumptions of Theorem 3.7. Then the following
expansion

∑
k∈K

c−1ω−γk
[
f

(
z1 + z2 +

√
∆k

2

)(
z2 − z1 +

√
∆k

2

)α(
z1 − z2 +

√
∆k

2

)β
(3.13)

− eiπ(α−β)
sin((α+ c− γ)π)

sin((β + c− γ)π)
f

(
z1 + z2 −

√
∆k

2

)(
z2 − z1 −

√
∆k

2

)α(
z1 − z2 −

√
∆k

2

)β ]
=

∞∑
n=−∞

sin((β − cn− γ)π)

sin((β − c− γ)π)
e−iπc(n+1)θ(z)cn+γ

×
D−α+cn+γz−z2

[
(z − z2)β−cn−γ−1

(
θ(z)

(z−z2)(z−z1)

)−cn−γ−1
θ′(z)f(z)

] ∣∣∣∣∣
z=z1

Γ(1− α+ cn+ γ)
,

where

(3.14) ∆k = (z1 − z2)2 + 4V (θ(z)ωk),

(3.15) V (z) =
∞∑
r=1

Dr−1
z

(
q(z)−r

)∣∣∣
z=0

zr/r!

and

(3.16) θ(z) = (z − z1)(z − z2)q
(
(z − z1)(z − z2)

)
holds true.

As special case, if we set 0 < c ≤ 1, q(z) = 1 (θ(z) = (z − z1)(z − z2)) and
z2 = 0 in (3.13), we obtain

f(z) = c z−β(z − z1)−α
∞∑

n=−∞

sin ((β − cn− γ)π)

sin ((β + c− γ)π)
eIπc(n+1) [z(z − z1)]

cn+γ
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× D−α+cn+γz

Γ(1− α+ cn+ γ)
zβ−cn−γ−1(z + w − z1)f(z)

∣∣∣∣∣
z=z1
w=z

.(3.17)

4. Main results

This section is devoted to the presentation of 10 theorems. By suitably
applying Theorems 3.1 to 3.8 as well as some famous results due to Dougall and
Ramanujan, we obtain very interesting formulas involving the hyperharmonic

function H
(β)
α .

Theorem 4.1. Let α, β and µ be complex numbers such that α + β is not a
negative integer and let 0 < a ≤ 1. Then the following relationship holds true
for the hyperharmonic function

H(β)
α = −Γ(α+ β)

∞∑
n=−∞

γ + Ψ(1− µ− an)

Γ(1− α− µ− an)Γ(1 + µ+ an)Γ(β + µ+ an)Γ(1− µ− an)
.

(4.1)

Proof. Let u(z) = zα+β−1 and v(z) = log z in Theorem 3.1, we thus obtain

Dα
z z

α+β−1 log z = a

∞∑
n=−∞

(
α

µ+ an

)
Dα−µ−an
z zα+β−1Dµ+an

z log z.(4.2)

Dividing both sides of (4.2) by Γ(α+1), using equations (2.4) and (2.5) for the
computation of fractional derivatives, setting z = 1 and with the help of (2.7)
yields the desired result. �

Let us recall the celebrated Dougall’s summation formula [4, vol. 1, p. 7]

π2Γ(c+ d− a− b− 1)

Γ(c− a)Γ(c− b)Γ(d− a)Γ(d− b) sin(aπ) sin(bπ)
=

∞∑
n=−∞

Γ(a+ n)Γ(b+ n)

Γ(c+ n)Γ(d+ n)

(4.3)

which is valid for Re(c+ d− a− b) > 1.
By making use of this summation formula, we obtain the next formula in-

volving the hyperharmonic function H
(β)
α .

Theorem 4.2. Let α, β and µ be complex numbers such that α + β is not a
negative integer. Then for Re(β − α) > 0, we have

∞∑
n=−∞

Ψ(1− µ− n)

Γ(1− α− µ− n)Γ(1 + µ+ n)Γ(β + µ+ n)Γ(1− µ− n)
(4.4)

=
−H(β)

α

Γ(α+ β)
− γ

Γ(1− α)Γ(β)
.
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Proof. Rewrite (4.1) as

−H(β)
α

Γ(α+ β)
(4.5)

=

∞∑
n=−∞

Ψ(1− µ− an)

Γ(1− α− µ− an)Γ(1 + µ+ an)Γ(β + µ+ an)Γ(1− µ− an)

+ γ

∞∑
n=−∞

1

Γ(1− α− µ− an)Γ(1 + µ+ an)Γ(β + µ+ an)Γ(1− µ− an)
.

Setting a = 1 and using the following well known property of the gamma
function [21, p. 240, Eq. (I.30)]

Γ(a− n) =
(−1)nΓ(a)Γ(1− a)

Γ(1− a+ n)
(4.6)

the second summation term in the right member of (4.5) becomes
∞∑

n=−∞

1

Γ(1− α− µ− an)Γ(1 + µ+ an)Γ(β + µ+ an)Γ(1− µ− an)
(4.7)

=
1

Γ(1− µ)Γ(µ)Γ(1− α− µ)Γ(α+ µ)

∞∑
n=−∞

Γ(µ+ n)Γ(α+ µ+ n)

Γ(1 + µ+ n)Γ(β + µ+ n)
.

With the help of summation formula (4.3) the result follows. �

As seen in Section 3, the generalized Leibniz rule (3.1) possesses an integral
analogue (3.2) which provides the following interesting result.

Theorem 4.3. Let α, β and µ be complex numbers such that α+β is not a neg-
ative integer. Then the following relationship holds true for the hyperharmonic
function

H(β)
α = −Γ(α+ β)

∫ ∞
−∞

(γ + Ψ(1− µ− ω)) dω

Γ(1− α− µ− ω)Γ(1 + µ+ ω)Γ(β + µ+ ω)Γ(1− µ− ω)
.

(4.8)

Proof. The proof is essentially the same as the one of Theorem 4.1. The dif-
ference is that instead of using Theorem 3.1, we use Theorem 3.2. �

Now let us recall a formula due to Ramanujan [5, vol. 2, p. 300]∫ ∞
−∞

dω

Γ(a+ ω)Γ(b+ ω)Γ(c− ω)Γ(d− ω)
(4.9)

=
Γ(a+ b+ c+ d− 3)

Γ(a+ c− 1)Γ(a+ d− 1)Γ(b+ c− 1)Γ(b+ d− 1)
.

which is valid for Re(a+ b+ c+ d) > 3.
With the help of this integral formula, we obtain the following integral for-

mula involving the hyperharmonic function H
(β)
α .
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Theorem 4.4. Let α, β and µ be complex numbers such that α + β is not a
negative integer. Then for Re(β − α) > 0, we have∫ ∞

−∞

Ψ(1− µ− ω) dω

Γ(1− α− µ− ω)Γ(1 + µ+ ω)Γ(β + µ+ ω)Γ(1− µ− ω)
(4.10)

=
−H(β)

α

Γ(α+ β)
− γ

Γ(1− α)Γ(β)
.

which holds for Re(β − α) > 0.

Proof. Rewriting (4.8) in the following form

−H(β)
α

Γ(α+ β)
(4.11)

=

∫ ∞
−∞

Ψ(1− µ− ω) dω

Γ(1− α− µ− ω)Γ(1 + µ+ ω)Γ(β + µ+ ω)Γ(1− µ− ω)

+ γ

∫ ∞
−∞

dω

Γ(1− α− µ− ω)Γ(1 + µ+ ω)Γ(β + µ+ ω)Γ(1− µ− ω)

and using Ramanujan identity (4.9) on the second term of the right member
of (4.11) gives the result. �

From the new generalized Leibniz rule (3.3) as well as for its integral ana-
logue (3.4), we can obtain two interesting formulas involving the hyperharmonic

function H
(β)
α . These two new formulas are given in the next two theorems.

Theorem 4.5. Let α, β, µ and ν be complex numbers. Then for Re(1−β) > 0,
we have the following summation formula

H(β)
α =

Γ(−µ− ν) sin(βπ) sin((α+ β + µ)π)

Γ(α+ 1) sin((α+ β)π) sin((β − µ− ν)π)

∞∑
n=−∞

(−1)n+1H
(β−µ−ν−1)
α+ν+1−n

Γ(1− µ− n)Γ(−ν + n)
.

(4.12)

Proof. Let u(z) = log z, v(z) = 1 in equation (3.3) of Theorem 3.3 and divide
both side by Γ(α+ 1). We thus have

Dα
z z

α+β−1 log z

Γ(α+ 1)
(4.13)

=
z sin(βπ) sin(µπ) sin((α+ β − µ)π)

sin((α+ β)π) sin((β − µ− ν)π) sin((µ+ ν)π)

·
∞∑

n=−∞

Dα+ν+1−n
z zα+β−µ−1−n log z D−1−ν+nz zµ−1+n

Γ(2 + α+ ν − n)Γ(−ν + n)

which holds for Re(1− β) > 0. By making use of (2.7), appealing to (2.4) for
the calculation of the fractional derivative involved in the second term of the
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right member, and setting z = 1 after operation gives

H(β)
α =

sin(βπ) sin((α+ β − µ)π)

sin((α+ β)π) sin((β − µ− ν)π) sin((µ+ ν)π)

(4.14)

·
∞∑

n=−∞

Dα+ν+1−n
z zα+β−µ−1−n log z

∣∣
z=1

(−1)n sin((µ+ n)π)Γ(µ+ n)

Γ(1 + ν + µ)Γ(2 + α+ ν − n)Γ(−ν + n)
.

Finally, observing that

Dα+ν+1−n
z zα+β−µ−1−n log z

∣∣∣∣
z=1

= Γ(α+ 2 + ν − n)H
(β−µ−ν−1)
α+ν+1−n ,(4.15)

we obtain the desired result after simple calculations. �

Theorem 4.6. Let α, β, µ and ν be complex numbers. Then for Re(1−β) > 0,
we have the following integral formula

H(β)
α = − Γ(−µ− ν) sin(βπ)

Γ(α+ 1) sin((α+ β)π) sin((β − µ− ν)π)
(4.16)

×
∫ ∞
−∞

sin((α+ β + µ− ω)π)H
(β−µ−ν−1)
α+ν+1−ω

Γ(1− µ− ω)Γ(−ν + ω)
dω.

Proof. The proof is essentially the same as the one of Theorem 4.5. The dif-
ference is that instead of using Theorem 3.3, we use Theorem 3.4. �

Let us shift our focus on some applications of Taylor-like expansions in
terms of different types of functions stated in Section 3 as Theorems 3.5 to
3.8. These expansions provide interesting summation formulas involving the
hyperharmonic function Hβ

α .

Theorem 4.7. Let α, β and λ be three arbitrary complex numbers such that
α+ β ∈ C \ Z− and let z 6= 0. Then the following relation

zα+β−1 log z =

∞∑
n=−∞

H
(α+β−λ−n)
n+λ (z − 1)n+λ(4.17)

holds true for |z − 1| = 1.

Proof. Let f(z) = zα+β−1 log z, replace γ by λ and set z0 = 1, b = 0, and c = 1
in (3.6). We thus have

zα+β−1 log z =

∞∑
n=−∞

Dn+λ
z zα+β−1 log z

∣∣
z=1

Γ(n+ λ+ 1)
(z − 1)1+n+λ.(4.18)

Using (2.7), we see that

Dn+λ
z zα+β−1 log z

∣∣
z=1

Γ(n+ λ+ 1)
= H

(α+β−λ−n)
n+λ(4.19)

and the result follows easily. �
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Theorem 4.8. Let α, β and λ be three arbitrary complex numbers such that
α+ β ∈ C \ Z− and let z 6= 0. Then the following integral analogue of (4.17)

zα+β−1 log z =

∫ ∞
−∞

H
(α+β−λ−ω)
ω+λ (z − 1)ω+λdω(4.20)

holds true for |z − 1| = 1.

Proof. The proof is the same as that of Theorem 4.7 with the exception of the
use of Theorem 3.6 instead of Theorem 3.5. �

Theorem 4.9. Assuming the hypotheses of Theorem 3.7. Then the following
expansion

zµ(z − 1)ν log z =

∞∑
n=−∞

H
(µ+ν)
−ν+n+λ

(
z − 1

z

)n+λ
(4.21)

holds true for µ, ν, λ arbitrary complex numbers such that µ+ λ+ n ∈ C \Z−
and for z on the curve defined by ξ = 1

2 + 1
2

√
1 + eiθ, −π < θ < π.

Proof. Letting f(z) = log z, c = 1, z1 = 1, z2 = 0 and replacing γ by λ in
Theorem 3.7 yields

zµ(z − 1)ν log z =

∞∑
n=−∞

D−ν+n+γz z µ+n+λ−1 log z
∣∣
z=1

Γ(1− ν + n+ λ)

(
z − 1

z

)n+λ
.(4.22)

With the help of (2.7), we easily see that

D−ν+n+γz z µ+n+λ−1 log z
∣∣
z=1

Γ(1− ν + n+ λ)
= H

(µ+ν)
−ν+n+λ.(4.23)

Combining (4.22) and (4.23) gives the result. �

The last formula related to Taylor like expansion is based on that obtained
by Tremblay and Fugère [24].

Theorem 4.10. Assuming the hypotheses of Theorem 3.8. Then the following
expansion

log z =
∞∑

n=−∞

[
H

(1+α+β−2n)
−α+n + (z − 1)H

(α+β−2n)
−α+n

]
zn−β(z − 1)n−α(4.24)

holds true for α and β two arbitrary complex numbers such that α + β + n ∈
C\Z−, 1+α+β+n ∈ C\Z− and for z on the curve defined by ξ = 1

2+ 1
2

√
1 + eiθ,

−π < θ < π.

Proof. Setting f(z) = log z, c = 1, z1 = 1, z2 = 0, q(z) = 1 and γ = 0 in
Theorem 3.8 gives

log z =

∞∑
n=−∞

zn−β(z − 1)n−α
D−α+nz zβ−n−1(z + w − 1) log z

Γ(1− α+ n)

∣∣∣∣∣
z=1
w=z

(4.25)
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which can be written in the following form

log z =

∞∑
n=−∞

zn−β(z − 1)n−α
[
D−α+nz zβ−n log z

Γ(1− α+ n)

∣∣∣∣∣
z=1

(4.26)

+ (z − 1)
D−α+nz zβ−n−1 log z

Γ(1− α+ n)

∣∣∣∣∣
z=1

]
.

Using (2.7), we observe that

D−α+nz zβ−n log z

Γ(1− α+ n)

∣∣∣∣∣
z=1

= H
(1+α+β−2n)
−α+n ,(4.27)

D−α+nz zβ−n−1 log z

Γ(1− α+ n)

∣∣∣∣∣
z=1

= H
(α+β−2n)
−α+n(4.28)

and thus the result follows. �
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