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ON THE GROWTH RATE OF SOLUTIONS TO

GROSS-NEVEU AND THIRRING EQUATIONS

Hyungjin Huh

Abstract. We study the growth rate of H1 Sobolev norm of the solu-
tions to Gross-Neveu and Thirring equations. A well-known result is the
double exponential rate. We show that the H

1 Sobolev norm grows at
most an exponential rate exp(c t2).

1. Introduction

We study the following Cauchy problem of the nonlinear Dirac equations

i(∂tu+ ∂xu) +mv = ∂ūW (u, v),

i(∂tv − ∂xv) +mu = ∂v̄W (u, v),

u(x, 0) = u0(x), v(x, 0) = v0(x),

(1.1)

where u, v : R1+1 → C and m (≥ 0) is a mass. The potential W takes the form

W = a1|u|
2|v|2 + a2(ūv + v̄u)2,

where a1, a2 are real constants and ū is a complex conjugate of u.
The system (1.1) with W = 4|u|2|v|2 is called Thirring model and an initial

value problem of it has been studied by several authors [3, 5, 8, 12]. It is well
known in [5] that the problem is globally well posed in Sobolev space H1(R).
Low regularity well-posedness was discussed in [3, 8, 12] showing that there
exists a time T > 0 and solution u, v ∈ C([0, T ], Hs(R)) (s ≥ 0). Especially
global existence from L2 initial data has recently been proved in [3].

The system (1.1) with W = 1
4 (ūv+ v̄u)2 is called Gross-Neveu model [7] and

an initial value problem of it has been studied in [9, 13]. The global existence
of the solution in H1 was proved in [9] where an L∞ bound of the solution is
obtained by applying local form of charge conservation.

The spectral stability of solitary wave solutions to nonlinear Dirac equations
has been studied in [1, 2, 4]. They show that the solitary waves are spectrally
stable through analysis of the spectrum of linearization at a solitary wave. The
orbital stability of solitary wave of Thirring model is proved recently in [11].
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Here we are interested in the growth rate of the H1 norm. Note that the
system (1.1) has the charge conservation

∫

R

|u(x, t)|2 + |v(x, t)|2dx =

∫

R

|u0(x)|
2 + |v0(x)|

2dx.(1.2)

A well-known result in [5, 9] is that the solution of (1.1) grows at most in a
double exponential, i.e.,

‖u(t)‖H1(R) ≤ c1 exp(exp(c2t)),(1.3)

where c1 and c2 are constants. For the massless (m = 0) Thirring model in
[8], we can derive an uniform bound ‖u(t)‖H1 ≤ c‖u(0)‖H1 by using explicit
solution representation. A global bound on the H1 norm of the small L2

solutions to the massive (m > 0) Thirring equation is obtained in [11] by
deriving a new conserved quantity. The following is our main result.

Theorem 1.1. Consider the initial value problem (1.1) with u0, v0 ∈ H1(R).
Then we have the following upper bound

‖u(t)‖H1(R) + ‖v(t)‖H1(R) ≤ c1 exp(c2t
2).

To prove Theorem 1.1, we will estimate ‖u(t)‖L∞ . For the massive Thirring
[5, 6, 10] and Gross-Neveu [9] equations, L∞ norm of solutions was controlled
by L∞ norm of initial data in the following way

‖u(t)‖L∞ ≤ c1e
c2t.

Here we improve the above bound by ‖u(t)‖L∞ ≤ c1 + c2t
1

2 . Then Theorem
1.1 is proved in Section 2.

2. Proof of Theorem 1.1

To begin with, let us recall basic known facts. Global existence of the solu-
tion to (1.1) in Sobolev space H1(R) was proved in [5, 9].

Theorem 2.1. For initial data u0, v0 ∈ H1(R), there exists a global solution

(u, v) of (1.1) satisfying

u, v ∈ C([0,∞), H1(R)),

where u, v depend continuously on the initial data.

For a simple presentation of proof of Theorem 1.1, we only consider the
massive Gross-Neveu equation. For the case of the massive Thirring model,
the proof is similar and easier.

For the potential W = 1
4 (ūv + v̄u)2, the equation (1.1) takes the form

i(∂tu+ ∂xu) +mv = Re(ūv)v,

i(∂tv − ∂xv) +mu = Re(ūv)u.
(2.1)



ON THE GROWTH RATE OF SOLUTIONS 265

To estimate ‖∂xu(t)‖L2 and ‖∂xv(t)‖L2 , we take derivative ∂x on (2.1) and
obtain

∂t|ux|
2 + ∂x|ux|

2 + 2mIm(vxūx) = 2Re(ūv)Im(vxūx) + 2∂x(Re(ūv))Im(vūx),

∂t|vx|
2 − ∂x|vx|

2 + 2mIm(uxv̄x) = 2Re(ūv)Im(uxv̄x) + 2∂x(Re(ūv))Im(uv̄x),

which leads to

∂t(|ux|
2 + |vx|

2) + ∂x(|ux|
2 − |vx|

2)

= 2∂x(Re(ūv)) Im(vūx) + 2∂x(Re(ūv)) Im(uv̄x)

≤ 2
(

|v|2|ux|
2 + 2|u||v||ux||vx|+ |u|2|vx|

2
)

.

Integrating on R, we obtain

d

dt

∫

R

( |ux|
2 + |vx|

2 )(x, t) dx ≤ 4

∫

R

(

|v|2|ux|
2 + |u|2|vx|

2
)

(x, t) dx

≤ 4(‖u‖2L∞ + ‖v‖2L∞)

∫

R

|ux|
2 + |vx|

2 dx.

Then Gronwall’s inequality gives a bound

‖∂xu(t)‖
2
L2 + ‖∂xv(t)‖

2
L2(2.2)

≤ exp

(

4

∫ t

0

‖u(s)‖2L∞ + ‖v(s)‖2L∞ds

)

(

‖∂xu0‖
2
L2 + ‖∂xv0‖

2
L2

)

.

To complete the proof of Theorem 1.1, we will estimate L∞ bound of the
solution in (2.2) by applying an idea in [9]. Multiplying (2.1) by ū and v̄
respectively, we have

∂t|u|
2 + ∂x|u|

2 + 2mIm(ūv) = 2Re(ūv)Im(ūv),(2.3)

∂t|v|
2 − ∂x|v|

2 + 2mIm(v̄u) = 2Re(ūv)Im(uv̄),(2.4)

which implies

∂t(|u|
2 + |v|2) + ∂x(|u|

2 − |v|2) = 0.(2.5)

Integrating (2.5) on the domain

D(x0, t0) = {(x, t)| 0 < t < t0, x0 − t0 + t < x < x0 + t0 − t},

we have by applying Green’s Theorem

2

∫ t0

0

|u|2(x0 + t0 − s, s) ds+ 2

∫ t0

0

|v|2(x0 − t0 + s, s) ds

=

∫ x0+t0

x0−t0

( |u0(s)|
2 + |v0(s)|

2 ) ds ≤ M,

(2.6)

where we denote M =
∫

R
(|u0(y)|

2 + |v0(y)|
2) dy. Integrating (2.3) along char-

acteristic, we have

d

dt
|u(x+ t, t)|2 ≤ 2|v(x+ t, t)|2|u(x+ t, t)|2 + 2m|u(x+ t, t)||v(x+ t, t)|
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which implies

d

dt
|u(x+ t, t)| ≤ |v(x + t, t)|2|u(x+ t, t)|+m|v(x+ t, t)|.

Then we have

d

dt

(

e−
∫

t

0
|v(x+s,s)|2 ds |u(x+ t, t)|

)

≤ me−
∫

t

0
|v(x+s,s)|2 ds|v(x+ t, t)|.

Integrating both sides and considering (2.6), we obtain

|u(x+ t, t)| ≤ e
∫

t

0
|v(x+s,s)|2 ds

(

|u(x, 0)|+

∫ t

0

m|v(x+ s, s)|ds

)

≤ eM/2

(

|u(x, 0)|+m

(
∫ t

0

|v(x+ s, s)|2ds

)

1

2

t
1

2

)

≤ eM/2
(

|u(x, 0)|+m (M/2)
1

2 t
1

2

)

.

(2.7)

The similar argument applied to (2.4) leads us to

|v(x− t, t)| ≤ eM/2
(

|v(x, 0)| +m (M/2)
1

2 t
1

2

)

.(2.8)

Then we have, from (2.7) and (2.8),

‖u(t)‖2L∞ ≤ eM (2‖u0‖
2
L∞+m2Mt), ‖v(t)‖2L∞ ≤ eM (2‖v0‖

2
L∞+m2Mt).(2.9)

Plugging (2.9) into (2.2), we have

‖∂xu(t)‖
2
L2 + ‖∂xv(t)‖

2
L2

≤ exp

(

8eM
∫ t

0

m2Ms+ ‖u0‖
2
L∞ + ‖v0‖

2
L∞ ds

)

(

‖∂xu0‖
2
L2 + ‖∂xv0‖

2
L2

)

,

which proves Theorem 1.1.

Acknowledgement. This work was supported by the National Research
Foundation of Korea Grant funded by the Korean Government (NRF-2010-
330-B00128).

References

[1] G. Berkolaiko and A. Comech, On spectral stability of solitary waves of nonlinear Dirac

equation in 1D, Math. Model. Nat. Phenom. 7 (2012), no. 2, 13–31.
[2] N. Boussaid and A. Comech, On spectral stability of the nonlinear Dirac equation,

arXiv:1211.3336.
[3] T. Candy, Global existence for an L

2 critical nonlinear Dirac equation in one dimension,
Adv. Differential Equations 16 (2011), no. 7-8, 643–666.

[4] A. Comech, M. Guan, and S. Gustafson, On linear instability of solitary waves for the

nonlinear Dirac equation, arXiv:1209.1146.
[5] V. Delgado, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-

Dirac and other nonlinear Dirac equations in one space dimension, Proc. Amer. Math.
Soc. 69 (1978), no. 2, 289–296.

[6] R. H. Goodman, M. I. Weinstein, and P. J. Holmes, Nonlinear propagation of light in

one-dimensional periodic structures, J. Nonlinear Sci. 11 (2001), no. 2, 123–168.



ON THE GROWTH RATE OF SOLUTIONS 267

[7] D. J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field

theories, Phys. Rev. D 10 (1974), 3235–3253.
[8] H. Huh, Global strong solution to the Thirring model in critical space, J. Math. Anal.

Appl. 381 (2011), no. 2, 513–520.
[9] , Global solutions to Gross-Neveu equations, Lett. Math. Phys. 103 (2013), no.

8, 927–931.
[10] D. E. Pelinovsky, Survey on global existence in the nonlinear Dirac equations in one

spatial dimension, Harmonic analysis and nonlinear partial differential equations, 3750,
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