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ON THE GROWTH RATE OF SOLUTIONS TO
GROSS-NEVEU AND THIRRING EQUATIONS

HyunGJiN Huln

ABSTRACT. We study the growth rate of H! Sobolev norm of the solu-
tions to Gross-Neveu and Thirring equations. A well-known result is the
double exponential rate. We show that the H' Sobolev norm grows at
most an exponential rate exp(ct?).

1. Introduction

We study the following Cauchy problem of the nonlinear Dirac equations
i(Oru 4 Ozu) + mov = Oz W (u, v),
(1.1) (0w — Ozv) + mu = W (u, v),
u(z,0) = uo(x), v(z,0)=wv(x),
where u, v : R1*1 — C and m (> 0) is a mass. The potential W takes the form
W = aqJu*|v]|* + ag(av + vu)?,
where a1, as are real constants and @ is a complex conjugate of u.

The system (1.1) with W = 4|u|?|v|? is called Thirring model and an initial
value problem of it has been studied by several authors [3, 5, 8, 12]. Tt is well
known in [5] that the problem is globally well posed in Sobolev space H!(R).
Low regularity well-posedness was discussed in [3, 8, 12] showing that there
exists a time 7" > 0 and solution w, v € C([0,T], H*(R)) (s > 0). Especially
global existence from L? initial data has recently been proved in [3].

The system (1.1) with W = (v +ou)? is called Gross-Neveu model [7] and
an initial value problem of it has been studied in [9, 13]. The global existence
of the solution in H' was proved in [9] where an L> bound of the solution is
obtained by applying local form of charge conservation.

The spectral stability of solitary wave solutions to nonlinear Dirac equations
has been studied in [1, 2, 4]. They show that the solitary waves are spectrally
stable through analysis of the spectrum of linearization at a solitary wave. The
orbital stability of solitary wave of Thirring model is proved recently in [11].
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Here we are interested in the growth rate of the H' norm. Note that the
system (1.1) has the charge conservation

(1.2) / lu(z, t)|? + |v(z, t)]*de = / luo(2)* + |vo(x)|?d.

A well-known result in [5, 9] is that the solution of (1.1) grows at most in a
double exponential, i.e.,

(1.3) lu(t)]| i r) < c1exp(exp(cat)),

where ¢; and ¢y are constants. For the massless (m = 0) Thirring model in
[8], we can derive an uniform bound ||u(t)||g: < ¢||u(0)||z: by using explicit
solution representation. A global bound on the H' norm of the small L?
solutions to the massive (m > 0) Thirring equation is obtained in [11] by
deriving a new conserved quantity. The following is our main result.

Theorem 1.1. Consider the initial value problem (1.1) with ug, vo € H'(R).
Then we have the following upper bound

lu@) ey + o)l ) < c1exp(eat?).

To prove Theorem 1.1, we will estimate ||u(t)|| . For the massive Thirring
[5, 6, 10] and Gross-Neveu [9] equations, L* norm of solutions was controlled
by L°° norm of initial data in the following way

lu(®)llL= < cre.

Here we improve the above bound by ||u(t)||z~ < ¢1 + c2t2. Then Theorem
1.1 is proved in Section 2.

2. Proof of Theorem 1.1

To begin with, let us recall basic known facts. Global existence of the solu-
tion to (1.1) in Sobolev space H'(R) was proved in [5, 9].

Theorem 2.1. For initial data ug, vo € H'(R), there exists a global solution
(u, v) of (1.1) satisfying

u, v € C([0,00), H'(R)),
where u, v depend continuously on the initial data.

For a simple presentation of proof of Theorem 1.1, we only consider the
massive Gross-Neveu equation. For the case of the massive Thirring model,
the proof is similar and easier

For the potential W = 1 (v + vu)?, the equation (1.1) takes the form

i(Oru + Ozu) + mv = Re(av)v,

(2.1) i(0rv — Oxv) + mu = Re(av)u.



ON THE GROWTH RATE OF SOLUTIONS 265

To estimate || u(t)||r2 and ||0,v(t)]| L2, we take derivative 9, on (2.1) and
obtain

Ot|ug|? + Oz lug* + 2mIm(v,t,) = 2Re(aw)Im (v, i, ) + 20, (Re(wv))Im(vi, ),
vz |* — Oxlve)® + 2mIm(uy 0, ) = 2Re(wv)Im (uyty, ) + 20, (Re(aw))Im (v, ),
which leads to
Oc(Jual® + [val*) + Ox(Jual® — val*)
= 20, (Re(aw)) Im(viy) + 20, (Re(av)) Im(uvy,)
< 2 (0P ual + 2lul[v][ue|lve| + [ul*fvs]?) -

Integrating on R, we obtain

— | (Jual® + v |* ) (2, t) dz < 4/ (ol lual® + ul?|ve|?) (. t) da
dt Jg R

< A(llullZee +llvlZe) /R [ta]? + |va|? da.

Then Gronwall’s inequality gives a bound
(2.2) 10zu(t)]|Z2 + 1|0z (t)]|7-

t
< exp (4/0 lu(s)lI7 + Iv(S)II%wd8> (102 u0llZ> + |0z voll72) -

To complete the proof of Theorem 1.1, we will estimate L*> bound of the
solution in (2.2) by applying an idea in [9]. Multiplying (2.1) by @ and ©
respectively, we have
(2.3) O|ul?® + 0z Jul* + 2mIm(av) = 2Re(wv)Im(av),

2

e(uv
(2.4) Otv)? — 9z|v|* + 2mIm(vu) = 2Re(wv)Im(ud),

which implies
(2.5) Ou([ul® + [vf?) + 0o (Jul? — [v]*) = 0.
Integrating (2.5) on the domain
D(zo,t0) = {(x,t)|0 < t < tg, xo —to+t <z <z + 19— t},
we have by applying Green’s Theorem

to to
2/ |u|2(z0+t075,s)d5+2/ |v|*(zg — to + s,5) ds
(2.6) 0 0

zo+to
= [ Qo) + () s < o

o—to
where we denote M = [, (luo(y)|* + |vo(y)|*) dy. Integrating (2.3) along char-
acteristic, we have

d
Zu@+ 017 <20l + 6P u(@ + 1) + 2mu@ + ¢, )|[o(@ + t,1)]
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which implies

d

S+ 6,0)] < fow + 6,0 Plule + 4,0] + mlv(z + 1,0
Then we have

d t 2 t 2
pr (67 Jololats )P ds 1y (4 4 ¢, t)|) < me Jo lvts) P ds 4 ¢ 1)

Integrating both sides and considering (2.6), we obtain

t
u(z +t,1)| < efo lo@rs)l ds <Iu<z,o>| + / mlv(z + s, s>|d5)
0

t 3
(2.7) < M2 u(z,0)|+m (/ [v(z + S,S)|2d8) t3
0

< M/2 (|u(x,0)| +m(M/2)? t%) :
The similar argument applied to (2.4) leads us to
(2.8) o(a — t,1)] < M/? (|v(:c, 0)| +m (M/2)? t%) .
Then we have, from (2.7) and (2.8),
(29) [[u®)lie < e @lluolle +m*Mt), [[v(t)|7 < ™ (2]|voll7 +m*M?).
Plugging (2.9) into (2.2), we have
10zu(®)]1Z2 + 10z (t)]I72

¢
< exp (86M/ m2Ms + |Juol|% e + [Jvol/2 ds) (||8Iuo||%z + ||61’U0||%2) ,
0

which proves Theorem 1.1.
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