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GENERALIZED RIESZ POINTS FOR PERTURBATIONS OF

TOEPLITZ OPERATORS

An Hyun Kim

Abstract. In this note we consider “generalized Riesz points” for com-
pact and quasinilpotent perturbations of Toeplitz operators acting on the
Hardy space of the unit circle.

1. Introduction

If M is a subset of C, write isoM , accM , and ∂M for the isolated points,
the accumulation points, and the boundary of M , respectively. Let X be an
infinite dimensional complex Banach space and write B(X ) for the set of all
bounded linear operators acting on X . We recall ([1], [5], [6]) that an operator
T ∈ B(X ) is Fredholm if T (X ) is closed and both T−1(0) and X/T (X ) are
finite dimensional. If T ∈ B(X ) is Fredholm we can define the index of T by
index (T ) = dimT−1(0)− dimX/T (X ). An operator T ∈ B(X ) is called Weyl

if it is Fredholm of index zero. The essential spectrum σe(T ) and the Weyl
spectrum ω(T ) of T ∈ B(X ) are defined by

(1) σe(T ) = {λ ∈ C : T − λI is not Fredholm}

and

(2) ω(T ) = {λ ∈ C : T − λI is not Weyl}.

If T ∈ B(X ) we write

(3) πleft(T ) = {λ ∈ C : (T − λI)−1(0) 6= {0}}

for the set of all eigenvalues of T ,

(4) πleft
0 (T ) = {λ ∈ iso σ(T ) : 0 < dim(T − λI)−1(0) < ∞}

for the set of all isolated eigenvalues of finite multiplicity and

(5) π00(T ) = isoσ(T ) \ σe(T )
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for the set of Riesz points of T . From the continuity of the index we have

(6) π00(T ) = isoσ(T ) \ ω(T ).

In [8], the following notion was introduced.

Definition 1.1. The generalized Riesz points of T ∈ B(X ) are the complement
of the Weyl spectrum in the spectrum of T :

(7) π0(T ) := σ(T ) \ ω(T ).

We note that a necessary and sufficient condition for 0 ∈ π0(T ) is

(8) 0 < dim T−1(0) = dim X/T (X ) < ∞.

We recall ([3], [6], [7]) that “Weyl’s theorem holds for T ” if and only if

(9) π0(T ) = πleft
0 (T ),

and ([8, Definition 1]) “Browder’s theorem holds for T ” if and only if

(10) π0(T ) = π00(T ).

In [8], the following problem was raised:

Problem 1.2. For which operators T ∈ B(X ) is there implication, for compact
or quasinilpotent K ∈ B(X ),

(11) π0(T ) = ∅ =⇒ π0(T +K) = ∅,

or implication

(12) int π0(T ) = ∅ =⇒ int π0(T +K) = ∅?

In [8], it was shown that the implication (11) fails for compact and for
quasinilpotent operators T , while the implication (12) fails for quasinilpotents
but holds for compact operators and that both (11) and (12) can fail for self
adjoint and for unitary operators. We recall ([2], [4]) that a “Toeplitz operator”
Tϕ, induced by a function (so-called the symbol) ϕ ∈ L∞ ≡ L∞(T) (T denotes
the unit circle), is the operator on the Hardy space H2 ≡ H2(T) given by
setting

(13) Tϕ(f) = P(ϕf) for each f ∈ H2,

where P is the orthogonal projection from L2 ≡ L2(T) onto H2. It is fa-
miliar ([4, Corollary 7.46]) that the spectrum of a Toeplitz operator is al-
ways connected, and that the spectrum and the Weyl spectrum coincide, i.e.,
σ(Tϕ) = ω(Tϕ) (cf. [4, Corollary 7.25]; [3, Theorem 4.1]). Thus π0(Tϕ) = ∅
for every Toeplitz operator Tϕ. Therefore Toeplitz operators satisfy the con-
ditions of (11) and (12). Thus it is natural to ask Problem 1.2 for Toeplitz
operators. In this note we consider generalized Riesz points for compact and
quasinilpotent perturbations of Toeplitz operators acting on the Hardy space
of the unit circle.
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2. The main result

We first recall the connected hull ηK of compact K ⊆ C, the complement
of the unique unbounded connected component of the complement C \K, and
also write

η′K = ηK \K =
⋃

Hole(K)

for the union of all bounded components of that complement.

We are ready for:

Theorem 2.1. If Tϕ is a Toeplitz operator on H2 and K ∈ B(H2) is a compact

operator, then

acc π0(Tϕ +K) ⊆ η′(Tϕ +K).

Proof. First of all observe

(14) σe(Tϕ +K) = σe(Tϕ) and ω(Tϕ +K) = ω(Tϕ) = σ(Tϕ).

We now claim

(15) σ(Tϕ +K) \ ησ(Tϕ) ⊆ isoσ(Tϕ +K) .

Indeed if λ ∈ σ(Tϕ + K) but λ /∈ ησ(Tϕ), then Tϕ − λI is invertible, so that
Tϕ + K − λI is Weyl but not invertible. If Tϕ + K − µI were Weyl but not
invertible for each µ in the disk |µ − λ| < ǫ for some ǫ > 0, then ∂σ(Tϕ +K)
could contain a curve which does not intersect σ(Tϕ). But then such a curve
should lie in σe(Tϕ +K) because by the punctured neighborhood theorem we
have that for every operator S on a Hilbert space,

∂σ(S) \ σe(S) ⊆ isoσ(S).

Thus σe(Tϕ + K) 6= σe(Tϕ), a contradiction. Therefore we must have that
λ ∈ isoσ(Tϕ+K). This proves (15). Now in view of (14) and (15), the passage
from σ(Tϕ) to σ(Tϕ+K) is either filling in some holes of σ(Tϕ) or putting some
isolated points outside ησ(Tϕ). This implies

π0(Tϕ +K) = σ(Tϕ +K) \ ω(Tϕ +K)

= σ(Tϕ +K) \ σ(Tϕ)

⊆
(

ησ(Tϕ) \ σ(Tϕ)
)

∪ iso (Tϕ +K),

which implies acc π0(Tϕ +K) ⊆ η′(Tϕ +K). �

The essential spectrum of the Toeplitz operator induced by a continuous
symbol coincides with the range of the function ([4, Theorem 7.26]):

σe(Tϕ) = σ(ϕ) = ϕ(T).

The spectrum and the Weyl spectrum both coincide ([4, Corollary 7.25]) with
the exponential spectrum ([6, Definition 9.3.1]) of the symbol:

σ(Tϕ) = ω(Tϕ) = ε(ϕ)
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is the set of λ ∈ C for which either ϕ− λ vanishes somewhere on the circle T,
or if not, then ϕ− λ winds non-trivially around the origin 0 ∈ C.

We then have:

Corollary 2.2. If Tϕ is a Toeplitz operator with a continuous symbol ϕ such

that σ(Tϕ) has no hole or is an annulus M whose boundary contains an inner

boundary (i.e., ∂ M 6= ∂ ηM) and if K ∈ B(H2) is a compact operator, then

int π0(Tϕ +K) = ∅.

Proof. We note that by Theorem 2.1, the passage from σ(Tϕ) to σ(Tϕ + K)
is either filling some holes of σ(Tϕ) or putting some isolated points outside
ησ(Tϕ). Thus if σ(Tϕ) has no hole, then there is nothing to prove. If instead
σ(Tϕ) satisfies ∂ σ(Tϕ) 6= ∂ ησ(Tϕ), then σ(Tϕ + K) cannot fill in any hole
of σ(Tϕ); if it were not so then we would have that σe(Tϕ + K) 6= σe(Tϕ).
Therefore evidently,

π0(Tϕ +K) = σ(Tϕ +K) \ ω(Tϕ +K) = σ(Tϕ +K) \ σ(Tϕ) ⊆ iso (Tϕ +K),

which gives the result. �

Remark 2.3. We need not expect that (11) is true for any Toeplitz operator
Tvarphi with a continuous symbol ϕ. Indeed, in [8, Theorem 11], it was shown
that if σ(T ) = ω(T ) 6= ησ(T ), then (11) fails. For a concrete example, if we
take

ϕ(eiθ) =

{

e2iθ (0 ≤ θ ≤ π)

e−2iθ (π ≤ θ ≤ 2π),

then σ(Tϕ) = ω(Tϕ) = T, and hence ησ(Tϕ) = clD (the closed unit disk), so
that ∂ σ(Tϕ) = ∂ ησ(Tϕ).

We have been unable to decide whether or not int π0(T +K) = ∅ for every
Toeplitz operator T and every quasinilpotent K. We however have:

Theorem 2.4. If T ≡ Tϕ is a Toeplitz operator with analytic or co-analytic

symbol ϕ (i.e., ϕ ∈ H∞ or ϕ ∈ H∞) and if K ∈ B(H2) is a quasinilpotent

operator, then

(16) π0(T +K) ⊆ {β} for some β ∈ C.

Proof. Suppose β ∈ π0(T +K) (if such a β does not exist, there is nothing to
prove). Since T +K − βI is Weyl but not invertible, β must be an eigenvalue
of T +K. Thus for some unit vector x(eiθ) =

∑

∞

n=0
ane

inθ ∈ H2,

(17) (T − βI)x = −Kx.

Assume ak is the first non-zero coefficient of x(eiθ). Then (17) gives

(18) P

(

∞
∑

n=k

anϕ(e
iθ)einθ

)

−
∞
∑

n=k

βane
inθ = −K

(

∞
∑

n=k

ane
inθ

)

,
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where P denotes the orthogonal projection from L2 to H2. If ϕ(eiθ) =
∑

∞

n=0
bne

inθ is analytic we have

(19) ak(b0 − β)eikθ +

∞
∑

n=k+1

cne
inθ = −K

(

∞
∑

n=k

ane
inθ

)

for some cn ∈ C (n = k+1, k+2, . . .). But since K is quasinilpotent we must
have that b0 = β; indeed, a straightforward calculation shows that

(20) ||Kn||
1

n ≥ |ak|
1

n |b0 − β|,

which implies b0 = β because the left hand side approaches 0 as n → ∞. Thus
we can write

(21) ϕ(eiθ) = β +

∞
∑

n=1

bne
inθ.

Now we assume that γ ∈ π0(T + K). Then since γ is also an eigenvalue of
T +K, there is an eigenvector y(eiθ) =

∑

∞

n=0
dne

inθ ∈ H2 such that

(22) (T − γI)y = −Ky.

Assume dj is the first non-zero coefficient of y(eiθ). Then a similar calculation
to (19) shows that

(23) dj(β − γ)eijθ +

∞
∑

n=j+1

fne
inθ = −K





∞
∑

n=j

dne
inθ





for some fn ∈ C (n = j + 1, j + 2, . . .), which by the same argument as (20)
implies that γ = β. Therefore we can conclude that there exists at most one
point β ∈ π0(T + K), giving (16). If instead ϕ is co-analytic (that is, ϕ̄ is
analytic), then the above argument shows that

(24) π0(Tϕ +K) = π0((Tϕ +K)∗) = π0(Tϕ̄ +K∗) ⊆ {β} for some β ∈ C.
�

We were unable to answer:

Problem 2.5. If Tϕ is a Toeplitz operator on H2 and K ∈ B(H2) is a
quasinilpotent operator, does it follow

int π0(Tϕ +K) = ∅ ?

Problem 2.6. If Browder’s theorem holds for T ∈ B(X ) does it also hold for
T +K whenever K is Riesz and commutes with T ?

This would be the common generalization of the two cases of Theorem 11
of [7].
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