References
- J. Choi, Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers, J. Ineq. Appl. 49 (2013), 11 p.
- J. Choi, Certain summation formulas involving harmonic numbers and generalized harmonic numbers, Appl. Math. Comput. 218 (2011), no. 3, 734-740. https://doi.org/10.1016/j.amc.2011.01.062
- J. Choi and D. Cvijovic, Values of the polygamma functions at rational arguments, J. Phys. A: Math. Theor. 40 (2007), no. 50, 15019-15028; Corrigendum, ibidem 43 (2010), no. 23, 239801, 1p. https://doi.org/10.1088/1751-8113/40/50/007
- J. Choi and H. M. Srivastava, Some summation formulas involving harmonic numbers and generalized harmonic numbers, Math. Comp. Modelling 54 (2011), no. 9-10, 2220-2234. https://doi.org/10.1016/j.mcm.2011.05.032
- W. Chu, Summation formulae involving harmonic numbers, Filomat. 26 (2012), no. 1, 143-152. https://doi.org/10.2298/FIL1201143C
- W. Chu, Infinite series identities on harmonic numbers, Results Math. 61 (2012), no. 3-4, 209-221. https://doi.org/10.1007/s00025-010-0089-2
- A. Dil and V. Kurt, Polynomials related to harmonic numbers and evaluation of harmonic number series II, Appl. Anal. Discrete Math. 5 (2011), no. 2, 212-229. https://doi.org/10.2298/AADM110615015D
- H.-T. Jin and L. H. Sun, On Spiess's conjecture on harmonic numbers, Discrete Appl. Math. 161 (2013), no. 13-14, 2038-2041. https://doi.org/10.1016/j.dam.2013.03.024
-
K. Kolbig, The polygamma function
${\psi}$ (x) for x = 1/4 and x = 3/4, J. Comput. Appl. Math. 75 (1996), no. 1, 43-46. - H. Liu and W. Wang, Harmonic number identities via hypergeometric series and Bell polynomials, Integral Transforms Spec. Funct. 23 (2012), no. 1, 49-68. https://doi.org/10.1080/10652469.2011.553718
- E. Munarini, Riordan matrices and sums of harmonic numbers, Appl. Anal. Discrete Math. 5 (2011), no. 2, 176-200. https://doi.org/10.2298/AADM110609014M
- A. Sofo, Computational Techniques for the Summation of Series, Kluwer Academic/Plenum Publishers, New York, 2003.
- A. Sofo, Sums of derivatives of binomial coefficients, Adv. in Appl. Math. 42 (2009), no. 1, 123-134. https://doi.org/10.1016/j.aam.2008.07.001
- A. Sofo, Harmonic sums and integral representations, J. Appl. Anal. 16 (2010), no. 2, 265-277.
- A. Sofo, Harmonic number sums in higher powers, J. Math. Anal. 2 (2011), no. 2, 15-22.
- A. Sofo, Summation formula involving harmonic numbers, Anal. Math. 37 (2011), no. 1, 51-64. https://doi.org/10.1007/s10476-011-0103-2
- A. Sofo, New classes of harmonic number identities, J. Integer Seq. 15 (2012), Article 12.7.4.
- A. Sofo, Finite number sums in higher order powers of harmonic numbers, Bull. Math. Anal. Appl. 5 (2013), no. 1, 71-79.
- A. Sofo, Mixed binomial sum identities, Integral Transforms Spec. Funct. 24 (2013), no. 3, 187-200. https://doi.org/10.1080/10652469.2012.685937
- A. Sofo and H. M. Srivastava, Identities for the harmonic numbers and binomial coefficients, Ramanujan J. 25 (2011), no. 1, 93-113. https://doi.org/10.1007/s11139-010-9228-3
- H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, London, 2001.
Cited by
- Some evaluation of harmonic number sums vol.27, pp.12, 2016, https://doi.org/10.1080/10652469.2016.1231675
- Quadratic and cubic harmonic number sums vol.447, pp.1, 2017, https://doi.org/10.1016/j.jmaa.2016.10.026
- Some results on q-harmonic number sums vol.2018, pp.1, 2018, https://doi.org/10.1186/s13662-018-1480-7