DOI QR코드

DOI QR Code

HILBERT 2-CLASS FIELD TOWERS OF REAL QUADRATIC FUNCTION FIELDS

  • Jung, Hwanyup (Department of Mathematics Education Chungbuk National University)
  • Received : 2012.10.28
  • Published : 2014.04.30

Abstract

In this paper we study the infiniteness of Hilbert 2-class field towers of real quadratic function fields over $\mathbb{F}_q(T)$, where q is a power of an odd prime number.

Keywords

References

  1. S. Bae, S. Hu, and H. Jung, The generalized R'edei matrix for function fields, Finite Fields Appl. 18 (2012), no 4, 760-780. https://doi.org/10.1016/j.ffa.2012.01.004
  2. F. Gerth, Quadratic fields with infinite Hilbert 2-class field towers, Acta Arith. 106 (2003), no. 2, 151-158. https://doi.org/10.4064/aa106-2-5
  3. H. Jung, Imaginary bicyclic function fields with the real cyclic subfield of class number one, Bull. Korean Math. Soc. 45 (2008), no. 2, 375-384. https://doi.org/10.4134/BKMS.2008.45.2.375
  4. H. Jung, Hilbert 2-class field towers of imaginary quadratic function fields, J. Chungcheong Math. Soc. 23 (2010), no. 3, 547-553.
  5. F. Lemmermeyer, The 4-class group of real quadratic number fields, Preprint, 1998.
  6. C. Maire, Un raffinement du theoreme de Golod-Safarevic, Nagoya Math. J. 150 (1998), 1-11. https://doi.org/10.1017/S0027763000025034
  7. J. Martinet, Tours de corps de classes et estimations de discriminants, Invent. Math. 44 (1978), no. 1, 65-73. https://doi.org/10.1007/BF01389902
  8. M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), no. 4, 365-378.
  9. R. Schoof, Algebraic curves over ${\mathbb{F}}_2$ with many rational points, J. Number Theory 41 (1992), no. 1, 6-14. https://doi.org/10.1016/0022-314X(92)90079-5