DOI QR코드

DOI QR Code

Photoinduced Electron- and Energy-Transfer Processes in Supramolecules using Imide Compounds

  • Fujitsuka, Mamoru (The Institute of Scientific and Industrial Research (SANKEN), Osaka University) ;
  • Majima, Tetsuro (The Institute of Scientific and Industrial Research (SANKEN), Osaka University)
  • Received : 2014.01.14
  • Accepted : 2014.02.14
  • Published : 2014.03.01

Abstract

We summarize recent studies on photoinduced electron- and energy-transfer processes of various supramolecules including imide group(s) as a component. Recently, imides have been employed in various functional molecular systems, because of their excellent photophysical and electron accepting properties. Our research group also employed imides in various supramolecular systems such as donor-acceptor dyads, quantum dots, DNA, and so on. First, we summarize fundamental properties of imides such as photophysical and electrochemical properties. Then, photoinduced processes of imides in the supramolecular systems are described to show their applicability in the various fields.

Keywords

References

  1. Fujitsuka, M.; Majima, T., Photoinduced electron transfer processes in biological and artificial supramolecules. In Supramolecular Chemistry: From Molecules to Nanomaterials, Gale, P. A.; Steed, J. W., Eds. John Wiley & Sons Ltd.: 2012; Vol. 5, pp 2365-2395.
  2. Wasielewski, M. R., Chem. Rev. 1992, 92 (3), 435-61. https://doi.org/10.1021/cr00011a005
  3. Kavarnos, G. J.; Turro, N. J., Chem. Rev. 1986, 86, 401-449. https://doi.org/10.1021/cr00072a005
  4. Fujitsuka, M.; Ito, O., Photochemistry of fullerenes. In Handbook of Photochemistry and Photobiology, Nalwa, H. S., Ed. American Scientific Publishers: California, 2003; Vol. 2, pp 111-145.
  5. Wasielewski, M. R., J. Org. Chem. 2006, 71 (14), 5051-5066. https://doi.org/10.1021/jo060225d
  6. Heek, T.; Fasting, C.; Rest, C.; Zhang, X.; Wurthner, F.; Haag, R., Chem Commun 2010, 46 (11), 1884-6. https://doi.org/10.1039/b923806a
  7. Gosztola, D.; Niemczyk, M. P.; Svec, W.; Lukas, A. S.; Wasielewski, M. R., J. Phys. Chem. A 2000, 104 (28), 6545-6551. https://doi.org/10.1021/jp000706f
  8. Wuerthner, F., Pure Appl. Chem. 2006, 78 (12), 2341-2349.
  9. Greenfield, S. R.; Svec, W. A.; Gosztola, D.; Wasielewski, M. R., J. Am. Chem. Soc. 1996, 118 (28), 6767-6777. https://doi.org/10.1021/ja9600789
  10. Zhao, Y.; Wasielewski, M. R., Tetrahedron Lett. 1999, 40 (39), 7047-7050. https://doi.org/10.1016/S0040-4039(99)01468-9
  11. Liu, Y.; Yang, C.; Li, Y.; Li, Y.; Wang, S.; Zhuang, J.; Liu, H.; Wang, N.; He, X.; Li, Y.; Zhu, D., Macromolecules 2005, 38 (3), 716-721. https://doi.org/10.1021/ma048491l
  12. Mikroyannidis, J. A.; Stylianakis, M. M.; Sharma, G. D.; Balraju, P.; Roy, M. S., J. Phys. Chem. C 2009, 113 (18), 7904-7912. https://doi.org/10.1021/jp901651z
  13. Ford, W. E.; Kamat, P. V., J. Phys. Chem. 1987, 91 (25), 6373-80. https://doi.org/10.1021/j100309a012
  14. Holtrup, F. O.; Muller, G. R. J.; Quante, H.; De Feyter, S.; De Schryver, F. C.; Mullen, K., Chem.--Eur. J. 1997, 3 (2), 219-225. https://doi.org/10.1002/chem.19970030209
  15. Wintgens, V.; Valet, P.; Kossanyi, J.; Biczok, L.; Demeter, A.; Berces, T., J. Chem. Soc., Faraday Trans. 1994, 90, 411.
  16. Osuka, A.; Nakajima, S.; Maruyama, K.; Mataga, N.; Asahi, T.; Yamazaki, I.; Nishimura, Y.; Ohno, T.; Nozaki, K., J. Am. Chem. Soc. 1993, 115 (11), 4577-89. https://doi.org/10.1021/ja00064a021
  17. Wiederrecht, G. P.; Niemczyk, M. P.; Svec, W. A.; Wasielewski, M. R., J. Am. Chem. Soc. 1996, 118 (1), 81-8. https://doi.org/10.1021/ja953159y
  18. Baumstark, D.; Wagenknecht, H.-A., Angew. Chem., Int. Ed. 2008, 47 (14), 2612-2614. https://doi.org/10.1002/anie.200705237
  19. Gorl, D.; Zhang, X.; Wurthner, F., Angew. Chem. Int. Ed. 2012, 51 (26), 6328-6348. https://doi.org/10.1002/anie.201108690
  20. Giaimo, J. M.; Lockard, J. V.; Sinks, L. E.; Scott, A. M.; Wilson, T. M.; Wasielewski, M. R., J. Phys. Chem. A 2008, 112 (11), 2322-2330. https://doi.org/10.1021/jp710847q
  21. Yagai, S.; Seki, T.; Karatsu, T.; Kitamura, A.; Wurthner, F., Angew. Chem., Int. Ed. 2008, 47 (18), 3367-3371. https://doi.org/10.1002/anie.200705385
  22. Hirayama, F., J. Chem. Phys. 1965, 42, 3163.
  23. Cho, D. W.; Fujitsuka, M.; Sugimoto, A.; Majima, T., J. Phys. Chem. A 2008, 112 (31), 7208-7213. https://doi.org/10.1021/jp801983b
  24. Cho, D. W.; Fujitsuka, M.; Choi, K. H.; Park, M. J.; Yoon, U. C.; Majima, T., J. Phys. Chem. B 2006, 110 (10), 4576-4582. https://doi.org/10.1021/jp056078p
  25. Cho, D. W.; Fujitsuka, M.; Yoon, U. C.; Majima, T., J. Photochem. Photobiol. A, Chem. 2007, 190 (1), 101-109. https://doi.org/10.1016/j.jphotochem.2007.03.018
  26. Tatsuma, T.; Tachibana, S.-i.; Miwa, T.; Tryk, D. A.; Fujishima, A., J. Phys. Chem. B 1999, 103 (38), 8033-8035. https://doi.org/10.1021/jp9918297
  27. Naito, K.; Tachikawa, T.; Cui, S.-C.; Sugimoto, A.; Fujitsuka, M.; Majima, T., J. Am. Chem. Soc. 2006, 128 (51), 16430-16431. https://doi.org/10.1021/ja066739b
  28. Wuerthner, F., Chem. Commun. 2004, (14), 1564-1579.
  29. Wasielewski, M. R., Acc. Chem. Res. 2009, 42 (12), 1910-1921. https://doi.org/10.1021/ar9001735
  30. Frischmann, P. D.; Mahata, K.; Wurthner, F., Chem. Soc. Rev. 2013, 42 (4), 1847-1870. https://doi.org/10.1039/c2cs35223k
  31. Takada, T.; Kawai, K.; Fujitsuka, M.; Majima, T., Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (39), 14002-14006. https://doi.org/10.1073/pnas.0402756101
  32. Fujitsuka, M.; Majima, T., Phys. Chem. Chem. Phys. 2012, 14 (32), 11234-11244. https://doi.org/10.1039/c2cp41576c
  33. Fujitsuka, M.; Harada, K.; Sugimoto, A.; Majima, T., J. Phys. Chem. A 2008, 112 (41), 10193-10199. https://doi.org/10.1021/jp805350d
  34. Cho, D. W.; Fujitsuka, M.; Sugimoto, A.; Yoon, U. C.; Mariano, P. S.; Majima, T., J. Phys. Chem. B 2006, 110 (23), 11062-11068. https://doi.org/10.1021/jp057557r
  35. Cho, D. W.; Fujitsuka, M.; Yoon, U. C.; Majima, T., Phys. Chem. Chem. Phys. 2008, 10 (30), 4393-4399. https://doi.org/10.1039/b802074d
  36. Cho, D. W.; Fujitsuka, M.; Sugimoto, A.; Yoon, U. C.; Cho, D. W.; Majima, T., Phys. Chem. Chem. Phys. 2014, in press.
  37. Hayes, R. T.; Walsh, C. J.; Wasielewski, M. R., J. Phys. Chem. A 2004, 108 (13), 2375-2381. https://doi.org/10.1021/jp037176i
  38. Mataga, N.; Chosrowjan, H.; Shibata, Y.; Yoshida, N.; Osuka, A.; Kikuzawa, T.; Okada, T., J. Am. Chem. Soc. 2001, 123 (49), 12422-12423. https://doi.org/10.1021/ja010865s
  39. Mataga, N.; Chosrowjan, H.; Taniguchi, S.; Shibata, Y.; Yoshida, N.; Osuka, A.; Kikuzawa, T.; Okada, T., J. Phys. Chem. A 2002, 106 (51), 12191-12201.
  40. Anderson, H. L.; Hunter, C. A.; Sanders, J. K. M., J. Chem. Soc., Chem. Commun. 1989, 226-227.
  41. Otsuki, J.; Takatsuki, M.; Kaneko, M.; Miwa, H.; Takido, T.; Seno, M.; Okamoto, K.; Imahori, H.; Fujitsuka, M.; Araki, Y.; Ito, O.; Fukuzumi, S., J. Phys. Chem. A 2003, 107 (3), 379-385.
  42. Harada, K.; Fujitsuka, M.; Sugimoto, A.; Majima, T., J. Phys. Chem. A 2007, 111 (45), 11430-11436. https://doi.org/10.1021/jp075153o
  43. Fowler, C. J.; Sessler, J. L.; Lynch, V. M.; Waluk, J.; Gebauer, A.; Lex, J.; Heger, A.; Zuniga-y-Rivero, F.; Vogel, E., Chem.--Eur. J. 2002, 8 (15), 3485-3496. https://doi.org/10.1002/1521-3765(20020802)8:15<3485::AID-CHEM3485>3.0.CO;2-9
  44. Bernard, C.; Gisselbrecht, J. P.; Gross, M.; Vogel, E.; Lausmann, M., Inorg. Chem. 1994, 1994 (33), 2393-2401.
  45. Fujitsuka, M.; Shimakoshi, H.; Tojo, S.; Cheng, L.; Maeda, D.; Hisaeda, Y.; Majima, T., J. Phys. Chem. A 2009, 113 (14), 3330-3335. https://doi.org/10.1021/jp810617a
  46. Fujitsuka, M.; Shimakoshi, H.; Tojo, S.; Cheng, L.; Maeda, D.; Hisaeda, Y.; Majima, T., J. Phys. Chem. A 2010, 114 (12), 4156-4162. https://doi.org/10.1021/jp9119342
  47. Fujitsuka, M.; Shimakoshi, H.; Tei, Y.; Noda, K.; Tojo, S.; Hisaeda, Y.; Majima, T., Phys. Chem. Chem. Phys. 2013, 15 (15), 5677-5683. https://doi.org/10.1039/c3cp43795g
  48. Shida, T., Electronic Absorption Spectra of Radical Ions. Elsevier: New York, 1988.
  49. Marcus, R. A., Annu. Rev. Phys. Chem. 1964, 15, 144-196.
  50. Marcus, R. A.; Sutin, N., Biochim. Biophys. Acta. 1985, 811, 265-322. https://doi.org/10.1016/0304-4173(85)90014-X
  51. Holten, D.; Bocian, D. F.; Lindsey, J. S., Acc. Chem. Res. 2002, 35, 57. https://doi.org/10.1021/ar970264z
  52. Tsai, H.; Simpson, M. C., Chem. Phys. Lett. 2002, 353, 111. https://doi.org/10.1016/S0009-2614(01)01457-9
  53. Fujitsuka, M.; Shimakoshi, H.; Hisaeda, Y.; Majima, T., J. Photochem. Photobiol., A Chem. 2011, 217 (1), 242-248. https://doi.org/10.1016/j.jphotochem.2010.10.016
  54. Cui, S.-C.; Tachikawa, T.; Fujitsuka, M.; Majima, T., J. Phys. Chem. C 2010, 114 (2), 1217-1225. https://doi.org/10.1021/jp909579j
  55. Takada, T.; Lin, C.; Majima, T., Angew. Chem. Int. Ed. 2007, 46 (35), 6681-6683. https://doi.org/10.1002/anie.200701525
  56. Takada, T.; Fujitsuka, M.; Majima, T., Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (27), 11179-11183. https://doi.org/10.1073/pnas.0700795104
  57. Takada, T.; Takeda, Y.; Fujitsuka, M.; Majima, T., J. Am. Chem. Soc. 2009, 131 (19), 6656-6657. https://doi.org/10.1021/ja9009919
  58. Fujitsuka, M.; Majima, T., Photochemistry of short-lived species using multibeam irradiation. In Advances in Photochemistry, Neckers, D. C.; Jenks, W. S.; Wolff, T., Eds. Wiley: New Jersey, 2007; Vol. 29, pp 53-109.
  59. Chosrowjan, H.; Taniguchi, S.; Okada, T.; Takagi, S.; Arai, T.; Tokumaru, K., Chem. Phys. Lett. 1995, 242, 644-649. https://doi.org/10.1016/0009-2614(95)00790-B
  60. Andersson, M.; Davidsson, J.; Hammarstrom, L.; Korppi-Tommola, J.; Peltola, T., J. Phys. Chem. B 1999, 103, 3258-3262. https://doi.org/10.1021/jp9829795
  61. Fujitsuka, M.; Cho, D. W.; Shiragami, T.; Yasuda, M.; Majima, T., J. Phys. Chem. B 2006, 110 (19), 9368-9370. https://doi.org/10.1021/jp062023r
  62. Fujitsuka, M.; Cho, D. W.; Tojo, S.; Inoue, A.; Shiragami, T.; Yasuda, M.; Majima, T., J. Phys. Chem. A 2007, 111 (42), 10574-10579. https://doi.org/10.1021/jp076303y
  63. Oseki, Y.; Fujitsuka, M.; Sakamoto, M.; Majima, T., J. Phys. Chem. A 2007, 111 (39), 9781-9788. https://doi.org/10.1021/jp074062o
  64. Sakamoto, M.; Kim, S. S.; Fujitsuka, M.; Majima, T., J. Phys. Chem. C 2007, 111 (19), 6917-6919. https://doi.org/10.1021/jp0723113
  65. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K., Nat. Rev. Cancer 2003, 3, 380. https://doi.org/10.1038/nrc1071
  66. Kawai, K.; Cai, X.; Sugimoto, A.; Tojo, S.; Fujitsuka, M.; Majima, T., Angew. Chem., Int. Ed. 2004, 43 (18), 2406-2409. https://doi.org/10.1002/anie.200353318