DOI QR코드

DOI QR Code

Effects of calcium and vitamin D intake level on lipid metabolism in growing rats

칼슘과 비타민 D의 섭취 수준이 성장기 흰쥐의 지질대사에 미치는 영향

  • Lee, Sun-Min (Department of Food and Nutrition, Hanyang University) ;
  • Lee, Yeon-Joo (Department of Food and Nutrition, Hanyang University) ;
  • Won, Eun-Sook (R&D Planning Team, R&D Center, Seoul Dairy Co.) ;
  • Lee, Sang-Sun (Department of Food and Nutrition, Hanyang University)
  • Received : 2014.01.07
  • Accepted : 2014.03.19
  • Published : 2014.04.30

Abstract

Purpose: Association of low intake of calcium (Ca) and inadequate vitamin D (VD) status with higher prevalence rates of obesity has been reported. This study was conducted in order to investigate the effects of different levels of whey Ca and VD intake on lipid metabolism in growing rats. Methods: A total of 56 five-week-old male Sprague-Dawley rats were divided into seven groups and fed for five weeks. Ca groups were divided into three levels, low, normal, and high (0.25%, 0.5%, 1%). VD subgroups in the low and high Ca groups were divided into three levels, low, normal, and high (10 IU, 1,000 IU, and 5,000 IU). The effects of Ca and VD on each group were evaluated by two way ANOVA. Results: Significantly higher amounts of abdominal fat, visceral fat, and epididymal fat were observed in the Low-Ca groups than in the Normal-Ca and High-Ca groups. Serum leptin levels of Low-Ca groups were higher than those of Normal-Ca and High-Ca groups. The highest serum parathyroid hormone concentration was observed in the low Ca low VD group. The levels of serum 25(OH)D were significantly increased with increasing dietary VD levels. Significantly higher serum levels of triglycerides, total cholesterol, and HDL-cholesterol were observed in the low Ca groups than in the normal Ca and high Ca groups. Conclusion: These results indicate that low calcium intake increased serum lipid level and body fat amount.

본 연구는 성장기 흰쥐에서 저 적정 고수준의 칼슘과 비타민 D의 첨가식이가 흰쥐의 지질대사에 어떠한 영향을 미치는지 검토하고자 하였다. 56마리의 5주령 된 수컷 흰쥐에게 대조군 (CON; 0.5% Ca, 1,000 IU VD)을 포함하여 식이중의 칼슘의 수준에 따라 저칼슘군 (LC; 0.25%), 고칼슘군 (HC; 1%)으로 설정하였다. 그리고 칼슘 수준에 따라 vitamin D를 저비타민 D군 (LD; 10 IU), 적정비타민 D군 (ND; 1,000 IU), 고비타민 D군 (HD; 5,000 IU)으로 나누어 실험식이를 5주간 급여하였다. 1) 체중 증가량은 HC군이 LC군 보다 유의하게 낮았으나 (p < 0.05), 비타민 D의 수준에 따라서는 유의한 차이가 없었다. 2) 체내 복부지방, 내장지방, 부고환지방의 무게와 렙틴의 농도는 HC군이 LC군보다 유의하게 낮았다 (p < 0.01). 3) 25(OH)D의 농도는 비타민 D의 섭취수준이 증가할수록 유의하게 높아졌다 (p < 0.01). 부갑상선호르몬 농도는 실험군간 비교에서 LCLD군에서 가장 높았다 (p < 0.05). 4) 혈중 TG, T-C, HDL-C, LDL-C 농도는 HC군이 LC군에 비해 유의하게 낮았으며 (p < 0.01), HDL-C 농도의 경우 LCHD군에서 유의하게 높았다 (p < 0.05). 5) 여러 가지 지표간의 상관성을 분석한 결과 칼슘의 섭취와 혈중 지질성분, 체내 복부, 내장, 부고환지방무게가 모두 유의한 음의 상관관계를 보였다 (p < 0.01). 또한 비타민 D 섭취와 혈중 HDL-C농도가 유의한 양의 상관관계를 보였다 (p < 0.05). 혈중 부갑상선호르몬 농도와 혈중 TG농도, 체내 부고환지방과는 유의한 양의 상관관계를 보였다 (p < 0.01, p < 0.05). 혈중 leptin 농도와 혈중 T-C, TG농도, 체내 복부, 내장, 부고환 지방 무게는 모두 양의 상관관계를 보였다 (p < 0.01). 이상과 같은 결과로 볼 때 성장기 흰 쥐의 지질대사에서 낮은 수준의 칼슘 섭취는 체중증가량의 폭을 높임과 동시에 혈중 지질의 증가에 영향을 미치며 뿐만 아니라 체내 지방축적을 증가시키는 것으로 나타났다. 또한 낮은 수준의 칼슘섭취 시 비타민 D 섭취에 의한 지질대사는 HDL-C 농도를 높이는 효과를 나타냈다. 그러므로 체내 지질 대사를 개선하기 위해서는 적정량의 칼슘의 섭취뿐만 아니라 비타민 D 섭취와의 관계를 반드시 고려하여야 할 것으로 사료된다.

Keywords

References

  1. Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2011: Korea National Health and Nutrition Examination Survey (KNHANES V-2). Cheongwon: Korea Centers for Disease Control and Prevent; 2012.
  2. Fleischman AI, Yacowitz H, Hayton T, Bierenbaum ML. Effects of dietary calcium upon lipid metabolism in mature male rats fed beef tallow. J Nutr 1966; 88(3): 255-260. https://doi.org/10.1093/jn/88.3.255
  3. Yacowitz H, Fleischman AI, Amsden RT, Bierenbaum ML. Effects of dietary calcium upon lipid metabolism in rats fed saturated or unsaturated fat. J Nutr 1967; 92(3): 389-392. https://doi.org/10.1093/jn/92.3.389
  4. Neri LC, Mandel JS, Hewitt D. Relation between mortality and water hardness in Canada. Lancet 1972; 1(7757): 931-934.
  5. Jacqmain M, Doucet E, Despres JP, Bouchard C, Tremblay A. Calcium intake, body composition, and lipoprotein-lipid concentrations in adults. Am J Clin Nutr 2003; 77(6): 1448-1452.
  6. Zemel MB, Shi H, Greer B, Dirienzo D, Zemel PC. Regulation of adiposity by dietary calcium. FASEB J 2000; 14(9): 1132-1138.
  7. Carlson LA, Olsson AG, Orö L, Rössner S. Effects of oral calcium upon serum cholesterol and triglycerides in patients with hyperlipidemia. Atherosclerosis 1971; 14(3): 391-400. https://doi.org/10.1016/0021-9150(71)90067-0
  8. Starkey JD. A role for vitamin D in skeletal muscle development and growth. J Anim Sci 2014; 92: 887-892. https://doi.org/10.2527/jas.2013-7087
  9. Rosenstreich SJ, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest 1971; 50(3): 679-687. https://doi.org/10.1172/JCI106538
  10. The Korean Nutrition Society. Dietary reference intakes for Koreans, 1st Revision. Seoul: The Korean Nutrition Society; 2010.
  11. Shin YH, Kim KE, Lee C, Shin HJ, Kang MS, Lee HR, Lee YJ. High prevalence of vitamin D insufficiency or deficiency in young adolescents in Korea. Eur J Pediatr 2012; 171(10): 1475-1480. https://doi.org/10.1007/s00431-012-1746-0
  12. Reinehr T, de Sousa G, Alexy U, Kersting M, Andler W. Vitamin D status and parathyroid hormone in obese children before and after weight loss. Eur J Endocrinol 2007; 157(2): 225-232. https://doi.org/10.1530/EJE-07-0188
  13. Reeves PG. Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 1997; 127(5 Suppl): 838S-841S.
  14. Eller LK, Reimer RA. A high calcium, skim milk powder diet results in a lower fat mass in male, energy-restricted, obese rats more than a low calcium, casein, or soy protein diet. J Nutr 2010; 140(7): 1234-1241. https://doi.org/10.3945/jn.109.119008
  15. Avioli LV. Calcium and phosphorus. In: Shils ME, Young VR. Modern Nutrition in Health and Disease, 7th edition. Philadelphia (PA): Lea & Febiger; 1988. p.142-158.
  16. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18 (6): 499-502.
  17. Mitruka BM, Rawnsley HM. Table 5 Chemical components in serum of the normal albino rat. In: Clinical Biochemical and Hematological Reference Values in Normal Experimental Animals and Normal Humans, 2nd edition. New York (NY): Masson; 1981. p.160.
  18. Lee JH, Lee YS. Effects of excess calcium and iron supplement on bone loss, nephrocalcinosis and renal function in osteoporotic model rats. Korean J Nutr 2000; 33(2): 147-157.
  19. Sergeev IN, Song Q. High vitamin D and calcium intakes reduce diet-induced obesity in mice by increasing adipose tissue apoptosis. Mol Nutr Food Res Epub 2014 Jan 22; doi: 10.1002/mnfr. 201300503. PubMed PMID: 24449427.
  20. Jang SY, Lee JY, Bae JM, Lee C, Hong SN, Kim A, Kim HY. 25-hydroxyvitamin D levels and body mass index in healthy postmenopausal women. Korean J Obstet Gynecol 2012; 55(6): 378-383. https://doi.org/10.5468/KJOG.2012.55.6.378
  21. Feng L, Li JR, Yang F. Relationship of serum 25-hydroxyvitamin D with obesity and inflammatory cytokines in children. Zhongguo Dang Dai Er Ke Za Zhi 2013; 15(10): 875-879.
  22. Laraichi S, Parra P, Zamanillo R, El Amarti A, Palou A, Serra F. Dietary supplementation of calcium may counteract obesity in mice mediated by changes in plasma fatty acids. Lipids 2013; 48(8): 817-826. https://doi.org/10.1007/s11745-013-3798-y
  23. Parra P, Bruni G, Palou A, Serra F. Dietary calcium attenuation of body fat gain during high-fat feeding in mice. J Nutr Biochem 2008; 19(2): 109-117. https://doi.org/10.1016/j.jnutbio.2007.01.009
  24. Soares MJ, Murhadi LL, Kurpad AV, Chan She Ping-Delfos WL, Piers LS. Mechanistic roles for calcium and vitamin D in the regulation of body weight. Obes Rev 2012; 13(7): 592-605. https://doi.org/10.1111/j.1467-789X.2012.00986.x
  25. Zemel MB. Nutritional and endocrine modulation of intracellular calcium: implications in obesity, insulin resistance and hypertension. Mol Cell Biochem 1998; 188(1-2): 129-136. https://doi.org/10.1023/A:1006880708475
  26. Zemel MB. Regulation of adiposity and obesity risk by dietary calcium: mechanisms and implications. J Am Coll Nutr 2002; 21(2): 146S-151S. https://doi.org/10.1080/07315724.2002.10719212
  27. Lenders CM, Feldman HA, Von Scheven E, Merewood A, Sweeney C, Wilson DM, Lee PD, Abrams SH, Gitelman SE, Wertz MS, Klish WJ, Taylor GA, Chen TC, Holick MF; Elizabeth Glaser Pediatric Research Network Obesity Study Group. Relation of body fat indexes to vitamin D status and deficiency among obese adolescents. Am J Clin Nutr 2009; 90(3): 459-467. https://doi.org/10.3945/ajcn.2008.27275
  28. Hämalainen MM. Bone repair in calcium-deficient rats: comparison of xylitol+calcium carbonate with calcium carbonate, calcium lactate and calcium citrate on the repletion of calcium. J Nutr 1994; 124(6): 874-881.
  29. Choi MK. Effects of calcium intake on lipid contents and enzyme activity in rats of different ages. J East Asian Soc Diet Life 1988; 8(1): 9-19.
  30. Denke MA, Fox MM, Schulte MC. Short-term dietary calcium fortification increases fecal saturated fat content and reduces serum lipids in men. J Nutr 1993; 123(6): 1047-1053.
  31. Jang SE, Chyun JH. Effects of dietary calcium level and hijikia fusiforme supplementation on bone indices and serum lipid levels in ovariectomized rats. Korean J Nutr 2007; 40(5): 419-427.
  32. Zhou JC, Zhu YM, Guo P, Chen Z, Xie FZ, Liu XL, He S. Serum 25(OH)D and lipid levels in Chinese obese and normal weight males before and after oral vitamin D supplementation. Biomed Environ Sci 2013; 26(10): 801-807.