DOI QR코드

DOI QR Code

조기수렴 저감을 위한 해밍거리와 적합도의 혼합 유전 연산자

Hybrid Genetic Operators of Hamming Distance and Fitness for Reducing Premature Convergence

  • 이홍규 (한국기술교육대학교 전기전자통신공학부)
  • Lee, Hong-Kyu (School of Electrical, Electronics & Communication Engineering, Korea University of Technology and Education)
  • 투고 : 2014.04.07
  • 심사 : 2014.03.20
  • 발행 : 2014.04.30

초록

유전 알고리즘은 강인한 탐색과 최적화 기술이기는 하나 조기 수렴과 국부 최적해에 수렴하는 문제점들을 내포하고 있다. 모집단의 다양성이 작은 값으로 수렴할수록 탐색능력이 감소하고, 국부 최적해에 수렴하지만, 모집단의 다양성이 높은 값으로 수렴할수록 탐색능력이 증가하고 전역 최적해에 수렴할 수 있으나 유전 알고리즘은 발산할 수도 있다. 유전 알고리즘이 전역 최적해에 수렴하는 것을 보장하기 위해서는 유전 연산자가 적절하게 선정되어야 한다. 본 논문에서는 조기 수렴으로부터 벗어나기 위하여 모집단의 다양성을 유지하도록 평균해밍거리와 적합도 값을 혼합한 함수를 이용한 유전 연산자들을 제안하였다. 모의실험을 통하여 다양성의 유지를 위한 돌연변이 연산자와 수렴 특성의 향상을 위한 다른 유전자들의 효과를 확인할 수 있었으며, 본 논문에서 제안한 유전 연산자들이 조기 수렴이나 국부 최적해에 수렴하는 경우를 피하는데 유용한 방법임이 확인되었다.

Genetic Algorithms are robust search and optimization techniques but have some problems such as premature convergence and convergence to local extremum. As population diversity converges to low value, the search ability decreases and converges to local extremum but population diversity converges to high value, then the search ability increases and converges to global optimum or genetic algorithm may diverge. To guarantee that genetic algorithms converge to the global optima, the genetic operators should be chosen properly. In this paper, we propose the genetic operators with the hybrid function of the average Hamming distance and the fitness value to maintain the diversity of the GA's population for escaping from the premature convergence. Results of simulation studies verified the effects of the mutation operator for maintaining diversity and the other operators for improving convergence properties as well as the feasibility of using proposed genetic operators on convergence properties to avoid premature convergence and convergence to local extremum.

키워드

참고문헌

  1. S. Nolfi and D. Floreano, Evolutionary Robotics, Cambridge, MA: MIT Press, 2000.
  2. Hong K. Lee and G.-K. Lee, "Convergence properties of genetic algorithms," in Proceeding of the ISCA Int'l Conference on Computers and Their Applications, Seattle: WA, pp. 172-176, Mar. 2004.
  3. Hong K. Lee, "Improvement of convergence properties for genetic algorithms," The Journal of Korea Navigation Institute, Vol. 12, No. 5, pp. 412-419, Oct. 2008.
  4. B. Chakraborty, and P. Chaudhuri, "On the use of genetic algorithm with elitism in robust and nonparametric multivariate analysis," Austrian Journal of Statistics, Vol. 32, No. 1&2, pp. 13-27, 2003.
  5. M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, "Bayesian optimization algorithm, population sizing, and time to convergence," in Proceeding of Genetic and Evolutionary Computation Conference, Las Vegas: NV, pp. 275-282, July, 2000.
  6. Hong K. Lee, D.-H. Lee, Z. Ran, G. Lee, and M. Lee, "On parameter selection for reducing premature convergence of genetic algorithms," in Proceeding of 23rd International Conference on Computer and Their Applications in Industry and Engineering, Las Vegas: NV, pp. 214-219, Nov. 2010.
  7. Hong K. Lee, "On sweeping operator for reducing premature convergence of genetic algorithms," Journal of Institute of Control, Robotics and Systems (in Korean), Vol. 17, No. 12, pp. 1210-1218, Dec. 2011. https://doi.org/10.5302/J.ICROS.2011.17.12.1210
  8. T. Jones and S. Forrest, "Fitness distance correlation as a measure of problem difficulty for genetic algorithms," in Proceeding of the 6th International Conference on Genetic Algorithms, San Francisco: CA, pp. 184-192, July, 1995.
  9. G. Rudolph, "Convergence analysis of canonical genetic algorithms," IEEE Trans. on Neural Networks: Special Issue on Evolutionary Computation, Vol. 5, No. 1, pp. 96-101, Jan. 1994. https://doi.org/10.1109/72.265964
  10. D. Goldberg and J. Richardson, "Genetic algorithms with sharing for multimodal function optimization," in Proceeding of the 2nd International Conference on Genetic Algorithms and their Applications, Hilsdale: NJ, pp. 41-49, July, 1987.
  11. S.-H. Bae and B.-R. Moon, "Mutation rates in the context of hybrid genetic algorithms," in Proceeding of the Genetic and Evolutionary Computation Conference, Seattle: WA, pp. 381-382, June 2004.
  12. M. Srinivas and M. Patnaik, "Adaptive probabilities of crossover and mutation in genetic algorithms," IEEE Trans. on Systems, Man and Cybernetics, Vol. 24, No. 4. pp. 656-667, Apr. 1994. https://doi.org/10.1109/21.286385
  13. J. Zhang and Y. Shang, "An improved multi-objective adaptive niche genetic algorithm based on pareto front," in Proceeding of IEEE International Advance Computing Conference, Patiala: India, pp. 300-304, Mar. 2009.
  14. H. Wang, Y. Liu, and S. Zeng, "Opposition-based particle swarm algorithm with cauchy mutation," in Proceeding of IEEE Congress on Evolutionary Computation, Singapore, Singapore, pp. 4750-4756, Sept. 2007.
  15. M. Rocha and J. Neves, "Preventing premature convergence to local optima in genetic algorithms via random offspring generation," in Proceeding of the 12 International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, Cairo: Egypt, pp. 127-136, May, 1999.
  16. W. Cedeno, V. Vemuri, and T. Slezak, "Multi-niche crowding in genetic algorithms and its application to the assembly of DNA restriction-fragments," Journal of Evolutionary Computation, Vol. 2, No. 4, pp. 321-345, 1995.
  17. Y. Zhang and H. Zhang, "A novel niche genetic algorithm for multimodal optimization," Journal of Convergence Information Technology, Vol. 6, No. 6, pp. 255-262, June, 2011. https://doi.org/10.4156/jcit.vol6.issue6.26
  18. Gordon K. Lee, "On the use of Hamming distance tuning for the generalized adaptive neural network fuzzy inference controller with evolutionary simulated annealing," in Proceeding of the IEEE Int'l Conference on Information Reuse and Integration, Las Vegas: NV, pp. 172-176, Aug. 2011.

피인용 문헌

  1. 보조 모집단을 이용한 유전자 알고리즘의 수렴속도 개선 vol.15, pp.10, 2014, https://doi.org/10.5762/kais.2014.15.10.6276