DOI QR코드

DOI QR Code

A study on the synthesis of porous silica from a sodium silicate

물유리로부터 다공성 실리카 제조에 관한 연구

  • Received : 2013.12.16
  • Accepted : 2014.04.10
  • Published : 2014.04.30

Abstract

WeI have studied the process for synthesizing porous silica with a specific surface area of minimum $800m^2/g$ by adding surfactant [Poly Etylene Glycol(PEG) and Hydroxy Propyl Cellulose(HPC)] to the sol-gel reaction between sodium silicate and hydrochloric acid. NaCl, the by-product of the sol-gel reaction, was water cleaned and removed; when 200 ml of water was used to clean 50 g of silica gel, NaCl remaining in the silica gel was reduced to maximum 0.81wt%. The appropriate level of surfactant for silica gel synthesizing proved to be below 5%. As a result of the experiment, for the silica synthesized by adding surfactant of HPC(2.5%)+PEG(2.5%), the surfactant area was $860m^2/g$ and grain size was $20-50{\mu}m$. From this study, we have concluded that it is of industrial significance that specific surface area is improved and silica of a regular grain size is obtained just by adding surfactant in the gel process or drying process of silica.

물유리와 염산의 졸-겔반응에 계면활성제(PEG와 HPC)를 첨가하여 비표면적이 $800m^2/g$ 이상인 다공성 실리카를 제조하는 공정에 대해 연구하였다. 졸-겔 반응의 부산물인 NaCl은 물로서 세척하여 제거하였으며, 실리카 습윤겔 50 g에 대해 200 ml의 물을 사용하여 3회 이상 세척할 경우 실리카겔에 잔류하는 NaCl은 0.81wt% 이하로 감소하였다. 계면활성제는 실리카에 대해 5% 미만을 사용하는 것이 적정 조건으로 나타났다. 실험 결과, HPC(2.5%)+PEG(2.5%)의 계면활성제를 첨가하여 제조한 실리카의 비표면적은 $860m^2/g$, 입경은 $20-50{\mu}m$으로 나타났다. 본 연구결과, 실리카의 겔화공정이나 건조공정에서 단지 계면활성제를 주입하여 비표면적을 향상시키고 균일한 입경의 실리카를 얻을 수 있다는 것은 공업적으로 매우 큰 의미가 있다고 생각된다.

Keywords

References

  1. Lawrence W. Hrubesh, Aerogel applications, Journal of Non-Crystalline Solids, Vol. 225, pp. 335-342, 1998. DOI: http://dx.doi.org/10.1016/S0022-3093(98)00135-5
  2. M Schmidt, F Schwertfeger, Applications for silica aerogel products, Journal of Non-Crystalline Solids, Vol. 225, pp. 364-368, 1998. DOI: http://dx.doi.org/10.1016/S0022-3093(98)00054-4
  3. G.M. Pajonk, Aerogel catalysts, Applied Catalysis, Vol. 72, No. 2, pp. 217-266, 1991. DOI: http://dx.doi.org/10.1016/0166-9834(91)85054-Y
  4. S. S. Panda, D. P. Mishra, A. Upadhyaya, Effect of varying gas-flow conditions on the characteristics of the diffusion flame and silica powders prepared using flame combustion synthesis, Powder Technology, Vol. 191, No. 1-2, pp. 164-169, 2009. DOI: http://dx.doi.org/10.1016/j.powtec.2008.10.003
  5. Jang KY, et al, J. Vac. Sci. Technol. A, Vol. 10, pp. 1152, 1992. DOI: http://dx.doi.org/10.1116/1.578218
  6. X. Lu, P. Wang, M.C. Arduini-Schuster, J. Kuhn, D. Buttner, O. Nilsson, U. Heinemann, J. Fricke, Thermal transport in organic and opacified silica monolithic aerogels, Journal of Non-Crystalline Solids, Vol. 145, pp. 207-210, 1992. DOI: http://dx.doi.org/10.1016/S0022-3093(05)80457-0
  7. Qisheng Huo, et al, Nature, Vol. 368, pp. 317-321, 1994. https://doi.org/10.1038/368317a0
  8. P.S. Roller, G. Ervin, Jr., J. Am. Chem. Soc., Vol. 62, pp. 461-468, 1940. DOI: http://dx.doi.org/10.1021/ja01860a001
  9. A.G Walton, The formation and properties of precipitation, Wiley-Interscience, pp. 136.
  10. Ralph. K.Iler, The chemistry of silica, Wiley-Interscience, pp. 223-224, 1972.
  11. A.E Neilsen, The kinetics of precipitation, Macmillan, New York, 1964.
  12. W. A. Weyle, A new approach to surface chemistry and to heterogeneous catalyst, Miner. Ind. Exp: Stn. Bull., Vol 57, No. 46, 1951.
  13. Ralph. K.Iler, The chemistry of silica, Wiley-Interscience, pp. 367, 1972.