DOI QR코드

DOI QR Code

Studies on Molecular Structure Changes in Polyethylene/Polypropylene Sheath-Core Monofilament

시스-코어 복합방사 폴리에틸렌/폴리프로필렌 모노필라멘트 분자 구조 변화에 관한 연구

  • 서영호 (영남대학교 나노메디컬유기재료공학과) ;
  • 임영민 (영남대학교 나노메디컬유기재료공학과) ;
  • 오태환 (영남대학교 나노메디컬유기재료공학과) ;
  • 한성수 (영남대학교 나노메디컬유기재료공학과) ;
  • 남영식 ((주)구스텍) ;
  • 남승민 ((주)휴비스) ;
  • 함진수 ((주)휴비스)
  • Received : 2014.01.17
  • Accepted : 2014.03.18
  • Published : 2014.04.30

Abstract

In this study, changes in the molecular structure of a sheath-core polyethylene (PE)/polypropylene (PP) bicomponent monofilament were investigated using different fractions of sheath or core components. The melt complex viscosity of sheath PE showed a greater shear thinning behavior than core PP. For both as-spun and drawn filaments, the crystal structure of sheath PE developed better than that of core PP. In the as-spun monofilament, the core PP crystal structure did not develop well, while sheath PE showed a more developed crystal structure. Further, sonic velocity indicating the molecular orientation increased upon drawing but was rarely dependent on the sheath PE fraction for both as-spun and drawn monofilaments.

Keywords

References

  1. G. Bhuvanesh, K. Kumar, and B. L. Deopura, "Oxygen Plasma-induced Graft Polymerization of Acrylic Acid on Polycaprolactone Monofilament", Eur Polym J, 2012, 48, 1940-1948. https://doi.org/10.1016/j.eurpolymj.2012.07.015
  2. K. Krishnanand, B. L. Deopura, and B. Gupta, "Determination of Intrinsic Birefringence Values of Polycaprolactone Filaments", Polym Int, 2013, 62, 49-53. https://doi.org/10.1002/pi.4304
  3. B. Gupta, K. Krishnanand, B. L. Deopura, and B. Atthoff, "Surface Modification of Polycaprolactone Monofilament by Low Pressure Oxygen Plasma", J Appl Polym Sci, 2013, 127, 1744-1750. https://doi.org/10.1002/app.37760
  4. T. Kikutani, J. Radhakrishnan, S. Arikawa, A. Takaku, N. Okui, X. Jin, F. Niwa, and Y. Kudo, "High-speed Melt Spinning of Bicomponent Fibers: Mechanism of Fiber Structure Development in Poly(ethylene terephthalate)/Polypropylene System", J Appl Polym Sci, 1996, 62, 1913-1924. https://doi.org/10.1002/(SICI)1097-4628(19961212)62:11<1913::AID-APP16>3.0.CO;2-Z
  5. J. Radhakrishnan, T. Kikutani, and N. Okui, "High-Speed Melt Spinning of Sheath-Core Bicomponent Polyester Fibers: High and Low Molecular Weight Poly(ethylene Terephthalate) Systems", Text Res J, 1997, 67, 684-694. https://doi.org/10.1177/004051759706700908
  6. S. H. Zeronian, M. K. Inglesby, N. Pan, D. Lin, G. Sun, B. Soni, K. W. Alger, and J. D. Gibbon, "The Fine Structure of Bicomponent Polyester Fibers", J Appl Polym Sci, 1999, 71, 1163-1173. https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1163::AID-APP15>3.0.CO;2-2
  7. T. Yamaguchi, K. Kim, T. Murata, M. Koide, S. Hitoosa, H. Urakawa, Y. Ohkoshi, Y. Gotoh, M. Nagura, M. Kotera, and K. Kajiwara, "On-line X-ray Analysis on the Continuous Drawing Process of Poly(ethylene terephthalate) Fiber", J Polym Sci: Polym Phys Ed, 2008, 46, 2126-2142. https://doi.org/10.1002/polb.21546
  8. W. E. Morton and J. W. S. Hearle, "Physical Properties of Textile Fibres", The Textile Institute, Manchester, 1993, p.383.
  9. R. Seguela, E. Staniek, B. Escaig, and B. Fillon, "Plastic Deformation of Polypropylene in Relation to Crystalline Structure", J Appl Polym Sci, 1999, 71, 1873-1885. https://doi.org/10.1002/(SICI)1097-4628(19990314)71:11<1873::AID-APP18>3.0.CO;2-I
  10. A. M. E. Baker and A. H. Windle, "Evidence for a Partially Ordered Component in Polyethylene from Wide-angle X-ray Diffraction", Polymer, 2001, 42, 667-680. https://doi.org/10.1016/S0032-3861(00)00364-5
  11. X. M. Shi, J. Zhang, J. Jin, and S. J. Chen, "Non-isothermal Crystallization and Melting of Ethylene-vinyl Acetate Copolymers with Different Vinyl Acetate Contents", eXPRESS Polym Lett, 2008, 2, 623-629. https://doi.org/10.3144/expresspolymlett.2008.75
  12. K. S. K. Rao Patnaik, K. Sirisha Devi, and V. Kiran Kumar, "Non-isothermal Crystallization Kinetics of Polypropylene (PP) and Polypropylene (PP)/Talc Nanocomposite", Int J Chem Eng Appl, 2010, 1, 346-353.
  13. A. Moldovan, S. Patachia, R. Buican, and M. H. Tierean, "Characterization of Polyolefins Wastes by FTIR Spectroscopy", Bulletin of the Transilvania University of Brasov Series I: Engineering Sciences, 2012, 5, 65-72.
  14. Y. L. Lee, R. S. Bretzlaff, and R. P. Wool, "Fourier-transform Infrared Studies of Polypropylene during Mechanical Deformation", J Polym Sci: Polym Phys Ed, 1984, 22, 681-698. https://doi.org/10.1002/pol.1984.180220411
  15. M. S. Sevegney, R. M. Kannan, A. R. Siedle, and P. A. Percha, "FTIR Spectroscopic Investigation of Thermal Effects in Semi-syndiotactic Polypropylene", J Polym Sci: Part B: Polym Phys, 2005, 43, 439-461. https://doi.org/10.1002/polb.20334
  16. L. L. C. Shenitech, Technique Support Speed of Sound in Liquids and Solids, http://www.shenitech.com/support/support_soundspeed.htm (2008, accessed 6 August 2013).