DOI QR코드

DOI QR Code

오픈소스 기반 수술항법장치의 하지 골절수술 응용검토

Open Source-Based Surgical Navigation for Fracture Reduction of Lower Limb

  • 정상현 (경북대학교 융합의료기기.로봇연구소) ;
  • 박재영 (경북대학교대학원 의과학과) ;
  • 박철우 (경북대학교 융합의료기기.로봇연구소) ;
  • 오창욱 (경북대학교대학원 의과학과) ;
  • 박일형 (경북대학교대학원 의과학과)
  • Joung, Sanghyun (Medical Device and Robot Institute of Park, Kyungpook Nat'l Univ.) ;
  • Park, Jaeyeong (Division of Biomedical Science, Kyungpook Nat'l Univ.) ;
  • Park, Chul-Woo (Medical Device and Robot Institute of Park, Kyungpook Nat'l Univ.) ;
  • Oh, Chang-Wug (Division of Biomedical Science, Kyungpook Nat'l Univ.) ;
  • Park, Il Hyung (Division of Biomedical Science, Kyungpook Nat'l Univ.)
  • 투고 : 2013.09.03
  • 심사 : 2014.03.01
  • 발행 : 2014.05.01

초록

골절 치료에서 최소 침습 수술 방법은 그 효용성이 입증 되었지만, 의료진이 골편을 직접 볼 수 없기 때문에 방사선 투시영상장치(C-armed fluoroscopy)에 의존하여 수술을 진행하게 된다. 최소침습 수술은 환자에게는 감염이 적고 회복이 빠르다는 장점이 있지만 의료진에게는 과도한 방사선 피폭과 부정확한 골절정복 가능성이 높아지는 문제점이 발생할 수 있다. 본 연구에서는 이와 같은 문제를 해결하기 위해 수술 항법장치와 수술 지원로봇을 활용하는 방법을 제안한다. 골편의 3D CT 모델을 실제 골편과 특징점을 이용해서 정합하는 오픈 소스 기반으로 구성된 수술 항법 장치와 2D 투시 영상에서 골편간의 회전 변위를 정상측 투시 영상과 비교하여 확인 할 수 있는 방법을 제안하였고, 모델 뼈를 이용한 실험으로 제안한 방법의 임상적 타당성을 확인하였다. 그 결과 3D CT-기반 수술 항법 장치의 모델 뼈와 영상정합 정확도는 약 2mm 로 정형외과 수술에서 요구되는 사양을 만족했으며, 2D 투시 영상에서는 ${\pm}15^{\circ}$범위의 골편간의 회전에서 $2.5^{\circ}$이하의 변별력을 나타내었다.

Minimally invasive intramedullary nail insertion or plate osteosynthesis has shown good results for the treatment of long bone fractures. However, directly seeing the fracture site is impossible; surgeons can only confirm bone fragments through a fluoroscopic imaging system. The narrow field of view of the equipment causes malalignment of the fracture reduction, and radiation exposure to medical staff is inevitable. This paper suggests two methods to solve these problems: surgical navigation using 3D models reconstructed from computed tomography (CT) images to show the real positions of bone fragments and estimating the rotational angle of proximal bone fragments from 2D fluoroscopic images. The suggested methods were implemented using open-source code or software and evaluated using a model bone. The registration error was about 2 mm with surgical navigation, and the rotation estimation software could discern differences of $2.5^{\circ}$ within a range of $15^{\circ}$ through a comparison with the image of a normal bone.

키워드

참고문헌

  1. Oh, C. W., Kim, S. J., Jeon, I. H., Kyung, H. S., Park, B. C., Ihn, J. C., Kim, K. H. and Woo, Y. K., 2004, "Treatment of Proximal Shaft Fracture of Tibia with Intramedullary Nail: Analysis According to AO Classification and the Poller Screw," Journal of the Korean Fracture Society, Vol. 17, No. 2, pp. 133-134.(Korean) https://doi.org/10.12671/jkfs.2004.17.2.133
  2. Oh, C. W., Kim, J. J., Byun, Y. S. and et al., 2009, "Minimally Invasive Plate Osteosynthesis of Subtrochanteric Femur Fractures with a Locking Plate: a Prospective Series of 20 Fractures," Arch Orthop Trauma Surg., Vol. 129, pp. 1659-1965. https://doi.org/10.1007/s00402-009-0815-y
  3. Kim, J. W. and Kim, J. J., 2010, "Radiation Exposure to the Orthopaedic Surgeon During Fracture Surgery," J Korean Orthop Assoc. Vol. 45, No. 2, pp. 107-113.(Korean) https://doi.org/10.4055/jkoa.2010.45.2.107
  4. Mohanty, R. B. K. and Malish, D., 2011, "Lower Limb Malrotation Following MIPO Technique of Distal Femoral and Proximal Tibial Fractures," Injury, Vol. 42, No. 2, pp. 194-199. https://doi.org/10.1016/j.injury.2010.08.024
  5. Grutzner, P. A. and Suhm, N., 2004, "Computer Aided Long Bone Fracture Treatment," Injury, Vol. 35. pp. S-A57-S-A64.
  6. Frack, J., Gritzbach, B., Winter, C., Maier, B. and Marzi, I., 2010, "Computer-Assisted Femur Fracture Reduction," European Journal of Trauma and Emergency Surgery, No. 2., pp. 151-156.
  7. Yeom, J. S., Kim, H.-Y., Choy, W. S., Kim, W. J., Kim, Y. H., Kim, H. M., Seo, D. H., Lee, S., Lee, J. B., Kim, N. K. and Kim, C. Y., 2002, "Development of an Intra-Operative Navigation System Using an Optical Tracking System," J. of Korean Orthopaedic Research Society, Vol. 5(2), pp. 110-117.(Korean)
  8. Ron, O., Joskowics, L., Milgraom, C. and Simkin, A., 2002, "Computer-Based Periaxial Rotation Measurement for Aligning Fractured Femur Fragments from CT: A Feasibility Study," Computer Aided Surgery, Vol. 7, pp. 332-341. https://doi.org/10.3109/10929080209146522
  9. Oszawald, M., Westphal, R., Bredow, J., Calafi, A., Hufner, T., Wahl, F., Krettek, C. and Gosling, T., 2010, "Robot-Assisted Fracture Reduction Using Three-Dimensional Intraoperative Fracture Visualization: an Experimental Study on Human Cadaver Femora," Journal of Orthopaedic Research, Vol. 28, pp.1240-1244. https://doi.org/10.1002/jor.21118
  10. Graham, A.E., Xie, S. Q., Aw, K.C., Xu, W.L. and Mukherjee, S., 2006, "Design of a Parallel Long Bone Fracture Reduction Robot with Planning Treatment Tool," International Conference on Intelligent Robots and Systems, pp. 2255-1260.
  11. Tang, P., Hu, L., Du, H., Gong, M. and Zhang, L., 2012, "Novel 3D Hexapod Computer-Assisted Orthopaedic Surgery System for Closed Diaphyseal Fracture Reduction," International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 8, pp. 17-24. https://doi.org/10.1002/rcs.417
  12. Ye, R., Chen, Y. and Yau, W., 2012, "A Simple and Novel Hybrid Robotic System for Robot-Assisted Femur Fracture Reduction," Advanced Robotics, Vol. 26, pp. 83-104. https://doi.org/10.1163/016918611X607383
  13. Joung, S., Liao, H., Kobayashi, E., Mitsuishi, M., Nakajima, Y., Sugano, N., Bessho, M., Ohashi, S., Matsumoto, T., Ohnishi, I. and Sakuma, I., 2010, "Hazard Analysis of Fracture-Reduction Robot and Its Application to Safety Design of Fracture-Reduction Assisting Robotic System," IEEE International Conference on Robotics and Automation 2010, pp. 1554-1561.
  14. Tokuda, J., Fischer, G. S., Papademetris, X., Yaniv, Z., lbanez, L., Cheng, P., Liu, H., Blevins, J., Arata, J., Golby, A. J., Kapur, T., Pieper, S., Burdette, E. C., Fichtinger, G., Tempany, C. M., and Hata, N., 2009, "OpenIGTLink: an Open Network Protocol for Image-Guided Therapy Environment," The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 5, No. 4, pp. 423-434. https://doi.org/10.1002/rcs.274
  15. Pieper, S., Halle, M. and Kikinis, R., 2004, "3D Slicer," IEEE International Symposium on Biomedical Imaging: Nano to Macro, Vol. 1, pp. 632-635.
  16. Hong, J. and Hashizume, M., 2010, "An Effective Point-Based Registration Tool for Surgical Navigation," Surg Endosc. Vol. 24, No. 4, pp. 944-948. https://doi.org/10.1007/s00464-009-0568-2