DOI QR코드

DOI QR Code

거미 서폐의 미세구조와 석면노출 환경의 모니터링을 위한 생물지표적 유용성 평가에 관한 연구

Microstructure of Spider Booklung as Bio-indicator for Monitoring Environmental Asbestos Exposure

  • 김창모 (서울특별시 보건환경연구원) ;
  • 문명진 (단국대학교 자연과학대학 생명과학과)
  • Kim, Chang-Mo (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Moon, Myung-Jin (Department of Biological Sciences, Dankook University)
  • 투고 : 2014.01.03
  • 심사 : 2014.02.28
  • 발행 : 2014.03.31

초록

인간의 생태계와 서식환경을 공유하고 있는 정주성 거미류의 경우 제한된 서식지 이동 특성으로 인해, 특정 유해환경을 효과적으로 감시할 수 있는 환경 지표생물로서의 활용가치가 매우 높은 생명체로 판단된다. 따라서 본 연구는 석면 섬유에 노출시킨 거미의 서폐 미세구조를 관찰하고, 그 결과를 토대로 유해환경을 모니터링할 수 있는 생물지표로서의 활용 가능성에 대해 논의하였다. 고해상도의 주사전자현미경으로 서폐의 미세구조를 관찰한 결과, 기공 주위에 분지된 수지상의 큐티클지주(spike)는 기낭으로 유입되는 공기를 정화하는 필터구조로 작동하였고, 기낭 내부에 수직돌출된 큐티클 지주는 기낭 공간을 안정적으로 확보하고 호흡 표면적을 극대화하는 구조체임이 확인되었다. 짧은 노출 기간에도 불구하고, 기공 개구부의 전 영역에서 청석면의 미세섬유가 검출되어 석면과 같은 환경 오염원에 대한 효과적인 생물지표로서의 가능성을 거미의 서폐에서 확인하였다. 또한, 기낭으로 유입되어 혈림프 공간을 관통한 미세섬유는 고착구조를 형성하고 조직손상을 유발함이 관찰되었는데, 섬유 주위에 밀집된 혈구는 흔히 관찰되었으나, 섬유 표면에 부착된 혈구나 석면소체 등은 관찰되지 않았다. 이는 상대적으로 짧은 석면노출기간에서 기인하는 것으로 해석되었다.

Orb-web spiders can be considered as an effective bio-indicative animal to monitor the ecological air pollution of certain habitat since they have limited shifting ability during their life spans. In this study we revealed the fine structural characteristics of booklung in the orb-web spider Nephila clavata, and its bio-indicative significance in the monitoring environmental asbestos exposure. The high resolution scanning electron microscopy results suggest that the cuticular spikes near the atrium could be act as an effective filtering structure for dust materials. Furthermore, inner cuticular spikes which protruded across the air sacs, have the functions not only sustaining appropriate respiratory volume of each air sac but also help to enhance respiratory capacity by maximizing the gross surface area for gas exchange. Interestingly, in spite of short exposure, the asbestose fibrils were effectively captured on the surface of the atrial cuticular spikes. Furthermore, histologic damages were observed due to penetration of asbestos fibrils through air sacs and fixed on the hemolymph space. In addition, although accumulated mass of hemocytes were observed near the fibrils, there were no asbestos bodies or coagulated hemocytes were found on the surface of the fibrils, This could be mainly due to the short exposure period towards asbestos. Briefly, these results indicate the spider's booklung could be valuable tool in the detection ecological air pollutants.

키워드

참고문헌

  1. Abratt RP, DA Vorobiof and N White. 2004. Asbestos and meso- thelioma in South Africa. Lung Cancer 45S:3-6.
  2. Anderson JF and KN Prestwich. 1980. Scaling of subunit structures in book lungs of spiders (Araneae). J. Morphol. 165: 167-174. https://doi.org/10.1002/jmor.1051650205
  3. Anderson JF and KN Prestwich. 1982. Respiratory gas exchange in spiders. Physiol. Zool. 55:72-90. https://doi.org/10.1086/physzool.55.1.30158445
  4. Backer LC, CB Grindem, WT Corbett, L Cullins and JL Hunter. 2001. Pet dogs as sentinels for environmental contamination. Sci. Total Environ. 274:161-169. https://doi.org/10.1016/S0048-9697(01)00740-9
  5. Belluso E, D Bellis, E Fornero, S Capella, G Ferraris and S Coverlizza. 2006. Assessment of inorganic fibre burden in biological samples by scanning electron microscopy-energy dispersive spectroscopy. Microchim. Acta 155:95-100. https://doi.org/10.1007/s00604-006-0524-y
  6. Bernstein DM and JA Hoskins. 2006. The health effects of chrysotile:Current perspective based upon recent data. Regul. Toxicol. Phamacol. 45:252-264. https://doi.org/10.1016/j.yrtph.2006.04.008
  7. Carbone M, S Emri, AU Dogan, I Steele, M Tuncer, HI Pass and YI Baris. 2007. A mesothelioma epidemic in Cappadocia: scientific developments and unexpected social outcomes. Nat. Rev. Cancer 7:147-154. https://doi.org/10.1038/nrc2068
  8. Churg A and ML Warnock. 1981. Asbestos and other ferruginous bodies. Am. J. Pathol. 102:447-456.
  9. DeNardo P, B Bruni, L Paoletti, R Pasetto and B Sirianni. 2004. Pulmonary fibre burden in sheep living in the Biancavilla area (Sicily): preliminary results. Sci. Total Environ. 325: 51-58. https://doi.org/10.1016/j.scitotenv.2003.11.018
  10. Foelix RF. 2011. Biology of Spiders (3rd ed). Oxford University Press, New York, pp. 1-419.
  11. Fornero E, E Belluso, S Capella and D Bellis. 2009. Environmental exposure to asbestos and other inorganic fibres using animal lung model. Sci. Total Environ. 407:1010-1018.
  12. Groome JR, MA Townley, M de Tschaschell and EK Tillinghast. 1991. Detection and isolation of proctolin-like immunoreactivity in Arachnids: Possible cardioregulatory role for proctolin in the orb-weaving spiders Argiope and Araneus. J. Insect Physiol. 37:9-19. https://doi.org/10.1016/0022-1910(91)90013-P
  13. Herreid CF, LW Lee and R Spampata. 1981. How do spiders breathe? Am. Zool. Abst. 21:917.
  14. Hill DE. 1977. Some observations on the physiology of living Lyssomanes viridis which should apply to the Araneae in general. Peckhamia 1:41-44.
  15. Humphreys WF. 1977. Respiration studies on Geolycosa godeffroyi (Araneae: Lycosidae) and their relationship to field estimates of metabolic heat loss. Comp. Biochem. Physiol. 57A:255-263.
  16. Karnovsky MJ. 1965. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27:137A.
  17. Lim HS and MJ Moon. 1994. Fine structure of book lungs in the spider, Pardosa astrigera. Kor. J. Electr. Microsc. 24: 1-11.
  18. Manning CB, V Vallyathan and BT Mossman. 2002. Diseases caused by asbestos: mechanisms of injury and disease development. Int. Immunopharmacol. 2:191-200. https://doi.org/10.1016/S1567-5769(01)00172-2
  19. Mcqueen DJ. 1980. Active respiration rates for the burrowing spider Geolycosa domifex (Hancock). Can. J. Zool. 58:1066- 1074. https://doi.org/10.1139/z80-150
  20. Moore SJ. 1976. Some spider organs as seen by the scanning electron microscope, with special reference to the booklung. Bull. Br. Arachnol. Soc. 3:177-187.
  21. Paris C, F Galateau-Salle, C Creveuil, R Morello, C Raffaelli, JC Gillon, MA Billon-Galland, JC Pairon, L Chevreau and M Letourneux. 2002. Asbestos bodies in the sputum of asbestos workers: correlation with occupational exposure. Eur. Respir. J. 20:1167-1173. https://doi.org/10.1183/09031936.02.00262102
  22. Reisinger PWH, P Focke and B Linzen. 1990. Lung morphology of the tarantula, Eurypelma californicum Ausserer, 1871 (Araneae: Theraphosidae). Bull. Br. Arachnol. Soc. 8:165-170.
  23. Strazny F and SF Perry. 1984. Morphometric diffusing capacity and functional anatomy of the book lungs in the spider Tegenaria spp. (Agelenidae). J. Morphol. 182:339-354. https://doi.org/10.1002/jmor.1051820308
  24. Strazny F and SF Perry. 1987. Respiratory system: structure and function. In: (ed., Nentwig W.) Ecophysiology of Spiders. Springer-Verlag, Berlin, pp. 78-94.
  25. van der Schalie WH, HS Gardner Jr, JA Bantle, CT De Rosa, RA Finch, JS Reif, RH Reuter, LC Backer, J Burger, LC Folmar and WS Stokes. 1999. Animals as sentinels of human health hazards of environmental chemicals. Environ. Health Perspect. 107:309-315. https://doi.org/10.1289/ehp.99107s2309
  26. Wilczek G, A Babczynska, M Augustyniak and P Migula. 2004. Relations between metals (Zn, Pb, Cd and Cu) and glutathione- dependent detoxifying enzymes in spiders from a heavy metal pollution gradient. Environ. Pollut. 132:453-461. https://doi.org/10.1016/j.envpol.2004.05.011