# Ultra-PEB의 구조성능 평가

Evaluation of Structural Performance of Ultra-PEB



주 영 규\* Ju, Young-Kyu



노 승 희\*\* Lho, Seung-Hee

# 1. 서 론

PEB(Pre-Engineered Building)는 공장 등의 단 층 장스팬 건물에 주로 사용되는 시스템이다. 그러 나 최근 적설하중으로 인한 장스팬 건축물 지붕 붕 괴사고가 여러 건 발생하였다. 붕괴 원인이 정확히 밝혀지지는 않았지만, 정확한 엔지니어링 작업의 부 재 또는 시공능력의 부족 등이 원인이 될 수 있다. PEB가 어느 정도의 하중을 견딜 수 있는지 구조성 능의 평가가 필요하다. 국외에서는 PEB를 대체할 수 있는 절곡형 웨브를 사용한 보(Plate girder with a corrugated web)가 사용되고 있고, 국내에서도 최근 Ultra-PEB가 개발되었다. 본 기사에서는 현재 국내에서 개발된 Ultra-PEB를 소개하고, Ultra-PEB의 구조성능 평가 결과를 설명하고자 한다. 구 체적으로는 2장에서는 Ultra-PEB의 소개, 3장에서 는 실험을 통한 전단성능 평가, 4장에서는 실험을 통한 휨성능 평가에 대해 기술한다.

## 2. Ultra-PEB

#### 2.1 Ultra-PEB 소개

Ultra-PEB는 〈그림 1〉과 같이 절곡형 철판을 웨 브에 적용한 절곡형 웨브 철골보로서, 일반 철골보 또는 PEB 보다 웨브 두께를 감소시킬 수 있다. 이와 같이 얇은 판이 사용되는 박판구조물은 항공, 자동 차산업에 주로 사용되어 왔고, 현재는 그 장점으로 인하여 교량 혹은 건축구조에도 적용 범위가 확대되 고 있다. 절곡형 철판을 교량과 건축물에 적용하기 위하여 1970년대부터 절곡 기술이 개발되었으나, 절 곡 기술과 용접 기술의 부족으로 인한 효율성 저하 로 절곡형 웨브 철골보가 널리 사용되지는 못하였 다. 그러나 계속적인 연구와 기술의 발전으로 현재 는 그 적용 범위가 점차 확대되고 있다. 최근 절곡기 술과 용접기술의 발전으로 공장 자동용접으로 제작 되는 Ultra-PEB가 개발되었다.

절곡형 웨브와 플랜지의 자동 용접이 가능해짐에 따라, Ultra-PEB는 공장 혹은 물류창고와 같은 장 경간 건물의 지붕 골조에 사용되는 PEB를 대체할

<sup>\*</sup> 정회원, 고려대학교 건축사회환경공학부 부교수

<sup>\*\*</sup> 고려대학교 건축사회환경공학과 연구원

수 있는 우수한 시스템이라고 할 수 있다. 3mm 두 께의 절곡형 웨브는 약 12mm 두께의 일반 웨브와 동등한 전단성능을 발휘할 수 있다. 웨브 두께 감소 로 철골 물량이 약 20% 정도 감소한다.



〈그림 1〉 Ultra-PEB

#### 2.2 국·내외 개발현황

일반적으로 사용되는 절곡형 웨브의 절곡형상은 사다리꼴 형상과 사인 형상이 있다. 스웨덴 회사인 Tanabalken, 네덜란드 회사인 GLP Corrugated Plate Industry와 오스트리아의 Zeman & Co. 가 가장 대 표적인 제작회사이다. GLP와 Tanabalken은 사다리 꼴 형상의 corrugation profile을, Zeman & Co.에서 는 사인 형상의 절곡판을 제작한다. 일본과 유럽에서 는 절곡형 웨브가 교량과 건축물이 많이 적용되었고, 이에 대한 설계기준도 가지고 있다. 스웨덴과 독일에 서도 절곡형 웨브 철골보 설계 가이드라인이 있다.

국내에서는 동부제철에서 Ultra-PEB를 개발하여 〈그림 2〉와 같이 건축물에 적용하고 있다. 그러나 국내에서는 아직 절곡형 웨브 철골보를 건축물에 적 용한 사례가 많지 않고, 설계기준도 없는 실정이다.



〈그림 2〉 지붕골조에 적용된 Ultra-PEB 개념도

# 3. Ultra-PEB 구조성능 평가

#### 3.1 절곡평 웨브 철골보의 구조적 특징

일반적으로 건축물에 사용되는 절곡형 웨브 철골 보의 웨브 판 두께는 2mm ~ 4mm로 기존 PEB 부재 에 사용되는 웨브 두께보다 상당히 얇은 판이 사용 된다. 따라서 전단내력(전단좌굴내력)이 가장 중요 한 내력평가요소가 된다. 또한 절곡 형상으로 인한 아코디언 효과 때문에 웨브는 전단만을 저항하고 휨 에는 저항하지 못하므로 기존 PEB와는 다른 휨거동 을 가진다. 〈그림 3〉은 절곡형 웨브 철골보의 파괴 모드를 보여준다. 본 연구에서는 Ultra-PEB의 웨브 의 좌굴내력 평가에 의한 전단내력을 평가하였고, 플랜지 항복에 의한 휨내력을 평가하였다.



〈그림 3〉 절곡형 웨브 철골보의 파괴모드

## 3.2 전단성능 평가

본 연구에서 적용한 절곡형 웨브 형상은 〈그림 4〉 와 같이 경사각 45도, 수평패널 폭(*b*) 200mm, 경사 패널 폭(*a*) 71mm이다. 교량과 비교할 때 건물에서 의 하중은 크지 않기 때문에 웨브 두께가 4mm 이하 이고, 이 정도의 두께는 45도 절곡이 가능하다. 실 제 사용되는 플랜지 폭은 약 150mm ~ 350mm인 것 을 고려하여 파고(*b*)을 50mm로 하였다.



〈그림 4〉 실험체 웨브의 형상

전단성능 평가를 위한 실험체는 〈표 1〉에 정리하 였다. 웨브 두께(*t*<sub>w</sub>)는 실제 제작범위를 반영한 2.2, 3.0, 4.0mm로, 모두 전단좌굴이 발생하는 두께이다. 단, H04T6B3 실험체는 웨브의 항복조건을 확인하기 위하여 6.0mm의 웨브를 사용하였다. 웨브 높이(*h*<sub>w</sub>) 는 440, 940, 1440mm를 사용하였다. 페브 높이(*h*<sub>w</sub>) 는 200, 300mm를 사용하였다. 전단파괴를 유도하기 위하여 콤팩트플랜지로 계획하였고, 플랜지 두께는 30mm를 사용하였다. SM490 강재가 사용되었다. 휨 의 영향 없이 절곡형 웨브의 전단파괴를 유도하기 위 하여 〈그림 5〉와 같이 1점 가력하였다.

〈그림 6〉은 실험 후 웨브에서 전단좌굴이 발생된 사진이다. H04T6B3 실험체는 웨브의 항복까지 내 력을 발휘하였고, 나머지 다른 실험체들은 모두 웨 브의 전단좌굴이 파괴모드였다. 전단좌굴이 발생한 실험체는 웨브의 세장비에 따라서 탄성좌굴, 비탄성 좌굴, 항복이 발생한 것을 확인할 수 있다.

| 실험체명         | $h_w$ (mm) | $t_w$ (mm) | $b_f$ (mm) |
|--------------|------------|------------|------------|
| H04T2B3 (V1) | 440        | 2.2        | 300        |
| H04T6B3 (V2) | 440        | 6.0        | 300        |
| H09T2B2 (V3) | 940        | 2.2        | 200        |
| H09T2B3 (V4) | 940        | 2.2        | 300        |
| H09T3B3 (V5) | 940        | 3.0        | 300        |
| H09T4B3 (V6) | 940        | 4.0        | 300        |
| H14T2B3 (V7) | 1,440      | 2.2        | 300        |
| H14T3B3 (V8) | 1,440      | 3.0        | 300        |
| H14T4B3 (V9) | 1,440      | 4.0        | 300        |

〈표 1〉 전단실험체 일람





〈그림 6〉 전단 실험 후 실험체 좌굴 형상

실험체의 웨브의 세장비에 따른 좌굴내력을 〈그림 7〉 에 나타냈고, Eurocode 3과 비교하였다. 모든 실험 체는 Eurocode 3 이상의 내력을 보유하고 있고, 특 히 웨브의 세장비가 0.5~1.0 사이 구간의 실험체들 은 Eurocode 3에 비해 충분히 큰 내력을 보유하고 있었다. Eurocode 3이 절곡형 웨브를 가진 철골보 에 대해서 상당히 보수적인 기준을 제시하고 있음을 알 수 있다.



〈그림 7〉 Eurocode 3 전단내력과 비교

# 3.3 휨성능 평가

휨성능 평가를 위한 실험체는 〈표 2〉에 정리하였

다. 콤팩트 플랜지를 가지는 4개의 실험체가 계획되 었다. 웨브의 세장비에 따른 휨내력을 평가하기 위 하여 웨브 두께와 웨브 높이를 변수로 하였다. 웨브 두께(*t<sub>w</sub>*)는 2.2, 3.0mm를 사용하였고, 웨브 높이 (*h<sub>w</sub>*)는 960, 1460 mm를 사용하였다. Eurocode 3에 서는 웨브의 세장비(λ<sub>p</sub>)가 최대세장비(λ<sub>p,max</sub>) 이하 의 값을 가지도록 제안하고 있다. 본 실험에서는 최 대세장비를 초과하지 않는 실험체 M10T22, M10T30 과 초과하는 실험체 M15T22, M15T30를 계획하여 휨성능평가 실험을 수행하였다.

| 실험체    | $h_w$ (mm) | $b_f$ (mm) | $t_w$ (mm) | $t_f$ (mm) | $\lambda_p$ | $\lambda_{p,\max}$ |
|--------|------------|------------|------------|------------|-------------|--------------------|
| M10T22 | 960        | 300        | 2.2        | 20         | 6.9         | 6.9                |
| M10T30 | 960        | 300        | 3.0        | 20         | 5.6         | 6.3                |
| M15T22 | 1460       | 300        | 2.2        | 20         | 10.6        | 6.9                |
| M15T30 | 1460       | 300        | 3.0        | 20         | 8.5         | 6.3                |

〈표 2〉 휨 실험체 일람

순수휨 상태에서의 실험을 위해 〈그림 8〉과 같이 2점 가력하였다. 순수휨을 받는 보의 중앙에서의 휨 파괴를 유도하기 위해, 보 중앙의 웨브에만 절곡형 웨브를 사용하였다.



실험체의 파괴모드는 '하부플랜지 항복 → 상부 플랜지 항복 → 웨브의 좌굴로 인한 상부플랜지 대 변형'순서로 진행되었다. 〈그림 9〉는 실험 후 상부 플랜지에서의 변형을 보여준다. M10T22와 M10T30 은 상부플랜지의 대변형까지 가력하였으나, M15T22 와 M15T30은 엑츄에이터의 내력 부족으로 상부플랜 지가 항복되는 상태까지만 가력하였다.



〈그림 9〉 가력에 따른 실험체 M10T22 변형 형상

〈그림 10〉은 휨실험체의 하중-변위 곡선이다.
M10T22와 M10T30은 M10T22의 상부플랜지 대변형 발생 전까지는 거의 동일한 거동을 보인다. 단,
M10T30이 M10T22보다 연성적인 거동을 하는데,
그 이유는 웨브가 두꺼울수록 플랜지에서의 변형을
저항할 수 있기 때문이다. M15T22와 M15T30도 상
부플랜지 항복까지 거의 동일한 거동을 보인다. 이
와 같이 웨브의 두께는 탄성구간에서는 거의 영향을
주지 못한다. 단, 웨브의 두께가 두꺼울수록 플랜지
항복 이후 연성거동을 할 수 있음을 확인하였다.

실험 결과 모든 실험체는 Eurocode 3에서 제시하 는 휨내력 이상의 값을 보유하고 있음을 확인하였 다. Eurocode 3에서 제시하는 최대세장비를 초과하 는 웨브를 가진 실험체 M15T22와 M15T30 역시도 플랜지 항복까지의 내력을 충분히 발휘하였다.



## 4. 결 언

본 기사에서는 절곡형 웨브가 사용된 철골보의 특 징과 Ultra-PEB의 전단 및 휨성능에 대하여 살펴보 았다. 구조실험을 통한 전단 및 휨성능 평가 결과 Eurocode 3에서 제시하고 있는 내력 이상을 보유하 고 있음을 확인하였다.

절곡 기술과 용접 기술의 발전으로 점차 절곡형 웨브의 적용 범위가 넓어지고 있다. 그러나 유럽과 는 달리 국내에서는 아직 절곡형 웨브가 많이 사용 되고 있지 않고, 관련 설계기준도 마련되어 있지 않 은 실정이다. 이러한 의미에서 본 프로젝트는 국내 절곡형 웨브 철골보 발전을 위해 큰 의미를 가지는 프로젝트로 사료된다.

최근 적설하중으로 인한 건물 붕괴사고로 인해 엔 지니어의 역할이 그 어느 때보다 중요하다고 판단되 는 시점이다. 엔지니어링 기술이 발전할수록, 최적 화된 구조시스템과 구조부재가 설계된다. 그리고 이 에 따라 건물의 안전율은 점차 감소하게 되기 때문 에, PEB 그리고 Ultra-PEB와 같은 엔지니어링이 필요한 시스템에서는 성급히 시스템을 적용하기에 앞서 실험을 통한 명확한 구조성능 평가가 필요하다 고 사료된다.

## References

- Kim, Y. S., Lho, S. H., Park, M. W., Do, B. H., Ju, Y. K., and Kim, S. D., "Shear capacity of corrugated web beam for roof frame of industrial buildings." J. Arch. Inst. of Korea, Vol. 28 No. 9, 2012, pp. 57-65.
- Lho, S. H., Kim, Y. S., Park, M. W., Ju, Y. K., and Kim, S. D., "Experimental Study on Shear Capacity of Corrugated Web Beam." Proceedings of the IUMRS-ICA 2012, Busan, Korea, 2012.
- 3. Lho, S. H., Ju, Y. K., Lee, C. H., and Kim,

S. D., "Flexural Capacity of Corrugated Steel Beams under Pure Bending." Proceedings of the ISSS 2013, Jeju, Korea, 2013.

- Lho, S. H., Ju, Y. K., Lee, C. H., Oh, J. T., and Kim, S. D., "Bend-Buckling of Corrugated Webs under Pure Bending." Proceedings of the ISSS 2013, Jeju, Korea, 2013.
- Eurocode 3. Design of Steel Structures. European committee for standardization (CEN). Brussels, Belgium; 2003. Part 1-5: Plated Structural Elements.
- Elgaaly M., Hamilton R. W., and Seshadri A. Shear strength of beams with corrugated webs. Journal of Structural Engineering, Vol. 122, No. 4, 1996, pp. 390-398.
- Elgaaly, M., Seshadri, A., and Hamilton, R. W., "Bending strength of steel beams with corrugated webs." Journal of Structural Engineering, Vol. 123, No. 6, 1997, pp. 772-782.
- Pasternak, H., and Kubieniec, G., "Plate girders with corrugated webs." Journal of Civil Engineering and Management, Vol. 16, No. 2, 2010, pp. 166-171.