DOI QR코드

DOI QR Code

Automotive Tire Pressure Sensors with Titanium Membrane

티타늄 박막을 이용한 자동차 타이어 압력센서

  • Chae, Soo (Department of Automobile Engineering, Osan University)
  • 채수 (오산대학교 자동차계열)
  • Received : 2014.11.05
  • Accepted : 2014.11.20
  • Published : 2014.12.01

Abstract

In this work, mechanical characteristics of titanium diaphragm have been studied as a potential robust substrate and a diaphragm material for automotive tire pressure sensor. Lamination process techniques combined with traditional micromachining processes have been adopted as suitable fabrication technologies. To illustrate these principles, capacitive pressure sensors based on titanium diaphragm have been designed, fabricated and characterized. The fabrication process for micromachined titanium devices keeps the membrane and substrate being at the environment of 20 MPa pressure and $200^{\circ}C$ for a half hour and then subsequently cooled to $24^{\circ}C$. Each sensor uses a stainless steel substrate, a laminated titanium film as a suspended movable plate and a fixed, surface micromachined back electrode of electroplated nickel. The finite element method is adopted to investigate residual stresses formed in the process. Besides, out-of-plane deflections are calculated under pressures on the diaphragm. The sensitivity of the fabricated device is $9.45ppm\;kPa^{-1}$ with a net capacitance change of 0.18 pF over a range 0-210 kPa.

본 연구에서는 강한 내구성을 지닌 자동차 타이어용 압력센서를 개발하기 위해 박막 물질로서 적용될 티타늄 멤브레인의 기계적 특성이 연구되었다. 제작공정으로 기존의 마이크로 머시닝공정과 적층 공정기술이 동시에 적용되었으며, 티타늄 멤브레인 기반의 압력 센서가 설계, 제조 및 특성화 되었다. 마이크로 머시닝 공정을 통한 티타늄 멤브레인과 기판의 접합 제조과정은 30분 동안의 20 MPa의 압력과 $200^{\circ}C$의 온도과정 후 $24^{\circ}C$에서의 냉각으로 진행된다. 각각의 압력센서 표면은 니켈 도금된 후방전극이 기판 위에 마이크로 소자로 조립되었다. 제작과정에서 발생한 잔류응력을 예측하기 위해 유한요소 해석이 적용되었다. 또한 티타늄 멤브레인의 외부 압력하에서 변형에 의한 처짐이 계산되었다. 제작된 장치의 민감도는 $10.15ppm\;kPa^{-1}$ 였고 이때의 정전용량 변화량은 0.18 pF, 압력 범위는 0-210 kPa 였다.

Keywords

References

  1. H. Baltes, "CMOS micro electro mechanical systems," Sensors and Materials, vol. 9, pp. 331-346, 1997.
  2. N. C. MacDonald, "SCREAM microelectro mechanical systems," Microelectronic Engineering, vol. 32, pp. 49- 73, 1996. https://doi.org/10.1016/0167-9317(96)00007-X
  3. D. I. Choi, K. J. Jeon, and S. W. Lee, "Surface micromachining techniques," Journal of Mechanical Science and Technology, vol. 37, No. 12, pp. 73-77, 1997.
  4. R. T. Howe, "Applications of silicon micro machining to resonator fabrication," in Proceeding of 1994 IEEE International Frequency Control Symposium, Boston: MA, pp. 2-7, 1994.
  5. C. H. Mastrangelo, X. Zhang, and W. C. Tang, "Surface micromachined capacitive differential pressure sensor with lithographically-defined silicon diaphragm," in Proceeding of International Solid-State Sensors and Actuators Conference, vol. 1, pp. 612-615, 1995.
  6. R. R. Tummala, Fundamentals of Microsystems Packaging. New York, NY: McGraw-Hill, 2001.
  7. S. J. Stein, R. Wahlers, M. Heinz, and M. A. Stein, "Thick film heaters made from dielectric tape bonded stainless steel substrates," in Proceeding of ISHM '95, pp. 125-129, 1995.
  8. G. T. A. Kovacs, Micromachined Transducers Sourcebook. New York, NY: McGraw-Hill, 1998.
  9. W. P. Eaton and J. H. Smith, "Micromachined pressure sensors: Review and recent developments," Smart Materials and Structures, vol 6, pp. 530-539, 1997. https://doi.org/10.1088/0964-1726/6/5/004
  10. G. S. Chung, K. C. Lee, and J. H. Lee, "Fabrication of a micromachined ceramic thin-film type pressure sensor for high over pressure tolerance and its characteristics," Journal of the Korean Physical Society, vol. 49, no. 4, pp. 1379-1383, 2006.
  11. S. Timoshenko, Theory of Plates and Shells. New York, NY: McGraw-Hill, 1940.
  12. W. H. Ko, M. H. Bao, and Y. D. Hong, "A high-sensitivity integrated-circuit capacitive pressure transducer," IEEE Transactions on Electron Devices, vol. 29, pp. 48-56, 1982. https://doi.org/10.1109/T-ED.1982.20657
  13. E. I. Bromley, J. N. Randall, D. C. Flanders, and R. W. Mountain, "A technique for the dertermination of stress in thin films," Journal of Vacuum Science & Technology B, vol. 1, no. 4, pp. 1364-1366, 1983. https://doi.org/10.1116/1.582744