DOI QR코드

DOI QR Code

Application and Prospects of Molecular Imaging

분자영상의 적용분야 및 전망

  • Received : 2014.04.01
  • Accepted : 2014.04.25
  • Published : 2014.04.30

Abstract

In this paper, we study to classify molecular imaging and applications to predict future. Molecular imaging in vivo at the cellular level and the molecular level changes taking place to be imaged, that is molecular cell biology and imaging technology combined with the development of the new field. Molecular imaging is used fluorescence, bioluminescence, SPECT, PET, MRI, Ultrasound and other imaging technologies. That is applied to monitoring of gene therapy, cell tracking and monitoring of cell therapy, antibody imaging, drug development, molecular interaction picture, the near-infrared fluorescence imaging of cancer using fluorescence, bacteria using tumor-targeting imaging, therapeutic early assessment, prediction and therapy. The future of molecular imaging would be developed through fused interdisciplinary research and mutual cooperation, which molecular cell biology, genetics, chemistry, physics, computer science, biomedical engineering, nuclear medicine, radiology, clinical medicine, etc. The advent of molecular imaging will be possible to early diagnosis and personalized treatment of disease in the future.

본 논문에서는 분자영상을 분류하고 적용 분야와 미래를 예측해 보고자 하였다. 분자영상은 생체 내에서 분자수준과 세포수준에서 일어나는 변화를 영상화하는 것으로써 분자세포생물학과 첨단영상기술이 발전하여 접목된 새로운 분야이다. 분자영상은 형광, 생물발광, SPECT, PET, MRI, Ultrasound 등의 영상 기법들을 이용하여 유전자 치료 모니터링, 세포추적, 세포 치료 모니터링, 항체영상, 약제 개발, 분자 상호작용 영상, 근적외선 형광 물질을 이용한 암 형광 영상, Bacteria 를 이용한 종양 표적 영상, 치료효과 조기 평가, 치료 효과 예측 등에 적용되고 있다. 분자 영상의 미래는 분자세포 생물학, 유전학, 화학, 약학, 물리학, 전산학, 의공학, 핵의학, 영상의학, 임상의학 등 여러 학문 분야가 융합되어 상호협조와 공동연구를 통하여 발전해 나갈 것이다. 분자영상의 태동으로 미래의 의료의 모습은 질병의 조기진단과 개인 맞춤형 치료가 가능하게 될 것이다.

Keywords

References

  1. Daesung Pack, Guirack Choi, Byungsung Han, Byungju Ahn, "Feature values of DWT using MR general imaging and molecular imaging", Journal of the Korean Society of Radiology, Vol. 6, No. 5, pp. 409-414, 2012. https://doi.org/10.7742/jksr.2012.6.5.409
  2. K. Choi, et al., "Molecular Imaging", Vol. 6, pp. 75-84, 2007.
  3. P. Agrawal, G.J. Strijkers, and K. Nicolay, "Adv. Drug Deliv. Rev.", Vol. 62 pp. 42-58, 2010. https://doi.org/10.1016/j.addr.2009.09.007
  4. Weissleder R, Mahmood U. "Molecular imaging. Radiology", Vol. 219, pp. 316 - 333, 2001
  5. June Key Chung, "General Perspectives for Molecular Nuclear Imaging", Vol. 38, No. 2, pp. 111-114, 2004
  6. http://www.frost.com, "Medical Imaging Markets: Molecular Imaging", Sep. 2012.
  7. Massoud TF., Gambhir SS, "Molecular imaging in Living subjects seeing fundamental biological processes in a new light", Genes Dev., Vol. 17, pp. 545-580, 2003. https://doi.org/10.1101/gad.1047403
  8. Weissleder R. "A clearer vision for in vivo imaging", Nat. Biotechnol., Vol. 19, pp. 316-317, 2001. https://doi.org/10.1038/86684
  9. Massoud TF, Gambhir SS. "Molecular imaging in living subjects :seeing fundamental biological processes in a new light". Genes Dev., No. 17, pp. 545-580, 2003. https://doi.org/10.1101/gad.1047403
  10. Shah K, Tang Y, Breakefield X, Weissleder R. "Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo", Oncogene. No. 22, pp. 6865-6872, 2003. https://doi.org/10.1038/sj.onc.1206748
  11. Kim DE, Ishii K, Shah K, Weissleder R, "Schellingerhout D. Imaging of stem cell recruitment to ischemic infarcts in a murine model", Stroke 2004(In press)
  12. Shah K, Bureau E, Tang Y, Kim DE, Weissleder R, Breakefield X. "Induction of apoptosis in glioma cells by novel TRAILsecreting neural precursor cells (NPC) and in vivo tracking of NPC migration and tumor apoptosis", 33rd annual meeting of society for neuroscience. USA : New Orleans, 2003(Abstract).
  13. Greer LF 3rd, Szalay AA. "Imaging of light emission from the expression of luciferases in living cells and organisms : a review", Luminescence, No. 17, pp. 43-74, 2002.
  14. Jaekyu Roh, Dongeog Kim, "Optical Imaging in the Field of Molecular Imaging", Korean Medical Association, Vol. 47, No. 2, pp. 127-132, 2004. https://doi.org/10.5124/jkma.2004.47.2.127
  15. Luker G.D., Luker K.E., Shama V., Pica C.M., Dahlheimer J.L., Piwnica Worms D., et al., "In vitro and in vivo characterization of a dual function green fluorescent protein - HSV1 - thymidine kinase reporter gene driven by the human elongation factor 1 alpha promoter" Mol. Imaging, No. 1, pp. 65-73, 2002. https://doi.org/10.1162/153535002320162714
  16. Ntziachristos V., Tung C.H., Bremer C., Weissleder R., "Fluorescence molecular tomography resolves protease activity in vivo". Nat Med., No. 8, pp. 757-760, 2002. https://doi.org/10.1038/nm729
  17. Ntziachristos V., Chance B., "Probing physiology and molecular function using optical imaging : applications to breast cancer", Breast Cancer Res., No. 3, pp. 41-46, 2001. https://doi.org/10.1186/bcr269
  18. Tung C.H., Mahmood U., Bredow S., Weissleder R., "In vivo imaging of proteolytic enzyme activity using a novel molecular reporter", Cancer Res., Vol. 60, pp. 4953-4958, 2000.
  19. Bremer C., Tung C.H., Weissleder R., "In vivo molecular target assessment of matrix metalloproteinase inhibition", Nat Med., Vol. 7, pp. 743-748,2001 https://doi.org/10.1038/89126
  20. Kircher M.F., Mahmood U., King R.S., Weissleder R., Josephson L., "A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation", Cancer Res., Vol. 63, pp. 8122-8125, 2003.
  21. Weissleder R., Pittet M.J., "Imaging in the era of molecular Oncology", Nature, No. 452, pp. 580-589, 200., https://doi.org/10.1038/nature06917
  22. Day S.E., Kettunen M.I., Gallagher F.A., Hu D.E., Lerche M., Wolber J., Golman K., Ardenkjaer-Larsen J.H., Brindle K.M., "Detecting Tumor response to treatment using huperpolarization 13C magnetic response imaging and spectroscopy", Nat. Med., Vol. 13, pp. 1382-1387, 2007. https://doi.org/10.1038/nm1650
  23. T. Ay, X. Havaux, G. Van Camp, B. Campanelli, G. Gisellu, A. Pasquet, J.F. Denef, J.A. Melin and J.L. Vanoverschelde, "Destruction of contrast microbubbles by ultrasound: effects on myocardial function, coronary perfusion pressure, and microvascular integrity", Circulation, Vol, 104, pp. 461-466, 2001. https://doi.org/10.1161/hc3001.092038
  24. R. Gramiak and P.M Shah, "Echocardiography of the aortic root", Invest. Radiol., Vol. 3. pp. 356-366, 1986.
  25. Crum L. A., and Fowlkes J. B., "Acoustic Cavitation Generated by Microsecond Pluses of Ultrasound", Nature, Vol. 391, pp. 52-54, 1986.
  26. Forsberg, F., Shi, W. T., and Goldberg, B. B., "Subharmonic imaging of Contrast Agents", Ultrasonics, Vol. 38, pp. 93-98, 2000. https://doi.org/10.1016/S0041-624X(99)00148-1
  27. Franscesca Cavalieri, Meifavh Zhou, Muthupandian Ashokkumar, "The Design of Multifunctional Microbubbles for Ultrasound Image-Guided Cancer Therapy", Current Topic in Medicinal Chemistry, 2010.
  28. Natalya Rapoport, Zhonggao Gao, Anne Kennedy, "Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy", J Natl. Cancer Inst., Vol 114, pp. 89-99, 2007.
  29. Kilbanov A. L. "Targeted delivery of gas-filled microspheres. contrast agents for ultrasound imaging", Adv. Drug Deliv. Rev., Vol. 37. pp. 139-157, 1999. https://doi.org/10.1016/S0169-409X(98)00104-5
  30. Wu J.C., Tseng J.R., Gambhir S.S., "Molecular imaging of cardiovascular gene products", J Nucl Cardiol. Vol. 11, pp. 491-505, 2004. https://doi.org/10.1016/j.nuclcard.2004.04.004

Cited by

  1. [논문 철회] 노동자 건강보호를 위한 최신 유전독성학 연구전략 vol.44, pp.1, 2014, https://doi.org/10.5668/jehs.2018.44.1.31