DOI QR코드

DOI QR Code

Investigation of High Frequency Properties of Y-type Hexaferrite Dependence on Synthesis Condition

소결 조건에 따른 Y-type Hexaferrite의 고주파 특성

  • Received : 2014.02.21
  • Accepted : 2014.03.28
  • Published : 2014.04.30

Abstract

The samples of $Ba_2CoZnFe_{12}O_{22}$ was synthesized by the solid-state reaction method. The toroids of $Ba_2CoZnFe_{12}O_{22}$ were sintered with various sintering temperature at 1050, 1100, 1150, and $1200^{\circ}C$, and studied by x-ray diffractometer, vibrating sample magnetometer, network analyzer, and Mssbauer spectrometer. From the XRD patterns, the density of samples increased with increasing sintering temperature. From the magnetic hysteresis curves up to 10 kOe at 295 K, the saturation magnetization ($M_s$) of $Ba_2CoZnFe_{12}O_{22}$ samples in various sintered at 1050, 1100, 1150 ,and $1200^{\circ}C$ were showed around $M_s$= 33.0 emu/g. However, With increasing sintering temperature, the coercivity ($H_c$) of samples decrease. Complex permeability and permittivity of samples in various sintering temperatures were measured between 100MHz to 4 GHz. With increasing sintering temperature, the permeability of samples increase.

$Ba_2CoZnFe_{12}O_{22}$ 시료를 습식분쇄로 이용한 직접 합성법을 사용하였으며, 소결 조건의 변화에 따른 시료 제조후, x-선 회절기(XRD), 진동시료형 자화율측정기(VSM), 회로망 분석기, 그리고 뫼스바우어 분광기 측정을 이용하여 결정학적 및 자기적 특성을 연구하였다. X-선 회절 실험을 통해 Y-type hexaferrite가 주상임을 알 수 있었고, 소결 온도가 증가할수록 밀도가 증가하였다. 상온에서 10 kOe까지의 자화이력곡선 측정 결과, 포화 자화 값는 모든 시료가 약 33 emu/g으로 비슷한 값이 나왔으며, 보자력은 소결 온도가 증가할수록 감소하였다. 회로망 분석기를 통해 100 MHz부터 4 GHz까지 투자율과 유전율을 측정하였다. 그 결과, 소결 온도가 증가할수록 투자율과 tan ${\delta}_{\mu}$는 감소하였다.

Keywords

References

  1. B. W. Li, Y. Shen, Z. X. Yue, and C. W. Nan, Appl. Phys. Lett. 89, 132504 (2006). https://doi.org/10.1063/1.2357565
  2. J. W. Wang, A. L. Geiler, V. G. Harris, and C. Vittoria, J. Appl. Phys. 107, 09A515 (2010). https://doi.org/10.1063/1.3338970
  3. Y. Bai, J. Zhou, Z. Yue, Z. Gui, and L. Li, J. Appl. Phys. 98, 063901 (2005). https://doi.org/10.1063/1.2035878
  4. H. J. Kwon, J. Y. Shin, and J. H. Oh, J. Appl. Phys. 75, 6109 (1994). https://doi.org/10.1063/1.355476
  5. T. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005). https://doi.org/10.1103/PhysRevLett.94.137201
  6. J. Lee, Y. K. Hong, S. Bae, J. Jalli, G. S. Abo, J. Park, W. M. Seong, S. H. Park, and W. K. Ahn, J. Appl. Phys. 109, 09E530 (2011).
  7. A. Collomb, J. Muller, and T. Fournier, Mat. Res. Bull. 28, 621 (1993). https://doi.org/10.1016/0025-5408(93)90105-M
  8. Y. Bai, J. Zhou, Z. Gui, Z. Yue, and L. Li, J. Magn. Magn. Mater. 264, 44 (2003). https://doi.org/10.1016/S0304-8853(03)00134-3
  9. A. M. Nicolson and G. F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970). https://doi.org/10.1109/TIM.1970.4313932
  10. J. T. Lim and C. S. Kim, IEEE Trans. Magn. 49, 4192 (2013). https://doi.org/10.1109/TMAG.2013.2250930
  11. K. L. Cho and C. S. Kim, IEEE Trans. Magn. 49, 4291 (2013). https://doi.org/10.1109/TMAG.2013.2243125