DOI QR코드

DOI QR Code

Investigation on Water Purification Effect Through Long-Term Continuous Flow Test of Porous Concrete Using Effective Microorganisms

유용미생물을 이용한 포러스 콘크리트의 장기간 연속흐름 실험을 통한 수질정화 효과 검토

  • Park, Jun-Seok (School of Architecture & Civil, Environmental and Energy Engineering, Kyungpook National University) ;
  • Kim, Bong-Kyun (School of Civil Engineering, Chungnam National University) ;
  • Kim, Woo-Suk (School of Architecture, Kumoh National Institute of Technology) ;
  • Seo, Dae-Sok (Dong San Bio Concrete Industry Laboratory, Dong San Concrete Industry Company) ;
  • Kim, Wha-Jung (School of Architecture & Civil, Environmental and Energy Engineering, Kyungpook National University)
  • 박준석 (경북대학교 건설환경에너지공학부) ;
  • 김봉균 (충남대학교 토목공학부) ;
  • 김우석 (금오공과대학교 건축학부) ;
  • 서대석 (동산콘크리트산업(주)) ;
  • 김화중 (경북대학교 건설환경에너지공학부)
  • Received : 2013.12.13
  • Accepted : 2014.01.29
  • Published : 2014.04.30

Abstract

The purpose of this study is to investigate water purification properties of porous concrete by using effective microorganisms through the long-term continuous flow test. To solve the problems such as desorption of conventional microorganisms, in this study, tertiary treatment of the effective microorganisms identified by 16S rDNA sequence analysis was adopted per each step in the manufacturing process of porous concrete. And concentration for optimum continuous flow test and operation conditions through basic experiments according to retention time were investigated. Based on the experimental results, the porous concrete applying effective microorganisms showed no toxicity on the biological water quality and exhibited excellent removal efficiency than normal porous concrete. Therefore, contaminated water quality would be improved by treatment performance investigation of contaminants through long-term continuous flow test. If problems are complemented during the experiment process, it is expected to be able to reduce the non-point pollution sources flowing into river.

이 연구는 생물의 서식기반 제공 효과가 있는 다공질의 부석 및 포러스 콘크리트와 대사 작용 및 항산화작용에 의해 유기 오염물질을 분해시켜 오염된 하천수의 수질정화 효과가 있는 유용미생물을 동시에 이용하여 장기간 연속흐름시험을 통한 수질정화 특성을 검토하고자 하였다. 특히 기존의 미생물 탈리 등의 문제점을 해결하기 위하여 이 연구에서는 16S rDNA 염기서열 분석법에 의해 동정된 유용 미생물을 포러스 콘크리트 제조과정에서 각 단계별로 3차 처리하였으며, 최적의 연속흐름 실험을 위한 농도 및 체류시간별에 따른 기초실험을 통하여 운전조건을 검토하였다. 실험 결과 유용미생물을 적용한 포러스 콘크리트는 수질 및 생물에 대한 독성이 없는 것으로 나타났다. 그리고 일반 포러스 콘크리트 보다 유용미생물을 적용한 포러스 콘크리트가 우수한 제거효율을 나타내었으며, 150일 이상 큰 변화를 나타내지 않아 장기간 운전이 가능할 것으로 판단된다. 이와 같이 유용미생물을 적용한 포러스 콘크리트의 장기간 연속흐름 실험으로 오염물질 처리성능에 대한 검토를 통하여 오염된 수질을 향상시킬 수 있을 것이라고 판단되며, 실험과정 중 나타난 문제점들이 보완된다면 하천에 적용하여 유입되는 비점오염원을 저감시킬 수 있을 것으로 기대된다.

Keywords

References

  1. Choi, Y. H., Yoo, N. H., Choi, J. D., and Kim, G. S., "Environmental Functions and Impacts on Blowing Beams in Small Rivers," Kangwon National University, Journal of Agriculture and Life Sciences Research Institute, Vol. 10, 1999, pp. 38-46.
  2. Woo, H. S., "Evolution and Prospects of Domestic Rivers Business," Magazine of Korea Water Resources, Vol. 37, No. 1, 2004, pp. 41-59.
  3. Son, M. H., "Ecological Role of Urban Stream and Its Improvement," Magazine of Korean Association of Regional Geographers, Vol. 4, No. 1, 1998, pp. 15-25.
  4. Cha, H. Y., "CAP System for Improvement of the River Water Quality," Magazine of Korea Water Resources, Vol. 40, No. 7, 2007, pp. 17-23.
  5. Woo, H. S., "Evaluation and Prospects of the River Environmental Improvement Project," Journal of the Korean Geo-Environmental Society, Vol. 214, 2001, pp. 1-8.
  6. Kim, H. J., "Cheonggyecheon Restoration and Ecological Restoration of Stream," Magazine of Korea Water Resources, Vol. 37, No. 1, 2004, pp. 47-59.
  7. Park, G. S., "Development of Biopesticide and Role of Bacillus Spp," Journal of Korean Society of Industrial and Engineering Chemistry, Vol. 14, No. 4, 2011, pp. 1-11.
  8. Kim, J. H. and Kang, J. S., Heavy Metal Removal Technology, Korea Institute of Science and Technology Information, 2005.
  9. Kim, Y. G., Hong, S. J., Sim, C. G., Kim, M. J., Choi, E. J., Lee, M. H., Park, J. H., Han, E. J., Ahn, N. H., and Ji, H. J., "Functional Analysis of Bacillus Subtilis Isolates and Biological Control of Red Pepper Powdery Mildew Using Bacillus subtilis R2-1," Research in Plant Disease, Vol. 18, No. 3, 2012, pp. 201-209. (doi: http://dx.doi.org/10.5423/RPD.2012.18.3.201)
  10. Cho, G. T., Development Trend of Purification Technology of Korean Soil, Ground-water Contamination Using Microorganisms, Korea Environmental Industry & Technology Institute, 2011, pp. 1-16.
  11. Park, S. B., Lee, B. J., Lee, J., and Jang, Y. I., "A Study on the Seawater Purification Characteristics of Water-Permeable Concrete Using Recycled Aggregate," Resources, Conservation and Recycling, Vol. 54, No. 10, 2010, pp. 658-665. (doi: http://dx.doi.org/10.1016/j.resconrec.2009.11.006)
  12. Kim, D. K., Kim, K. Y., Ryu, H. D., Min, K. K., and Lee, S. I., "Long Term Operation of Pilot-scale Biological Nutrient Removal Process in Treating Municipal Wastewater," Bioresource Technology, Vol. 100, 2009, pp. 3180-3184. (doi: http://dx.doi.org/10.1016/j.biortech.2009.01.062)
  13. Higa, T. and Parr, J. F., "Beneficial and Effective Microorganisms for a Sustainable Agriculture and Environment," Japan International Nature Farming Research Center, 1994.
  14. Szymanski, N. and Patterson, R. A., "Effective Micro-organisms (EM) and Wastewater Systems," 03 Conference, Armidale, 2006, pp. 347-354.
  15. Song, W. J., Fu, H. Y., and Wang, G. Y., "Study on a Kind of Eco-Concrete Retaining Wall's Block With Water Purification Function," Procedia Engineering, Vol. 28, 2012, pp. 182-189. (doi: http://dx.doi.org/10.1016/j.proeng.2012.01.703)
  16. Nilsson, C., Lakshmanan, R., Renman, G., and Rajarao, G. K., "Efficacy of Reactive Mineral-Based Sorbents for Phosphate, Bacteria, Nitrogen and TOC Removal-Golumn Experiment in Recirculation Batch Mode," Water Research, Vol. 47, 2013, pp. 5165-5175. (doi: http://dx.doi.org/10.1016/j.watres.2013.05.056)
  17. Zakaria, Z., Gairola, S., and Shariff, N. M., "Effective Microorganisms (EM) Technology for Water Quality Restoration and Potential for Sustainable Water Resources and Management," International Environmental Modelling and Software Society, 2010.
  18. Liang, W., Wu, Z. B., Cheng, S. P., Zhou, Q. H., and Hu, H. Y., "Roles of Substrate Microorganisms and Urease Activities in Wastewater Purification in a Constructed Wetland System," Ecological Engineering, Vol. 21, 2003, pp. 191-195. (doi: http://dx.doi.org/10.1016/j.ecoleng.2003.11.002)
  19. Siddique, R. and Chahal, N. K., "Effect of Ureolytic Bacteria on Concrete Properties," Construction and Building Materials, Vol. 25, 2011, pp. 3791-3801. (doi: http://dx.doi.org/10.1016/j.conbuildmat.2011.04.010)
  20. Gross, A., Kaplan, D., and Baker, K., "Removal of Chemical and Microbiological Contaminants from Domestic Greywater Using a Recycled Vertical Flow Bioreactor (RVFB)," Ecological Engineering, Vol. 31, No. 2. 2007, pp. 107-114. (doi: http://dx.doi.org/10.1016/j.ecoleng.2007.06.006)
  21. Samso, R. and Garcia, J., "Bio_Pore, a Mathematical Model to Simulate Biofilm Growth and Water Quality Improvement in Porous Media: Application and Calibration for Constructed Wetlands," Ecological Engineering, Vol. 54, 2013, pp. 116-127. (doi: http://dx.doi.org/10.1016/j.ecoleng.2013.01.021)
  22. Wu, Y. H., Xia, L. H., Yu, Z. Q., Shabbir, S., and Kerr, P. G., "In-situ Bioremediation of Surface Waters by Periphytons," Bioresource Technology, Vol. 151, 2014, pp. 362-372. (doi: http://dx.doi.org/10.1016/j.biortech.2013.10.088)
  23. Iain, M. M. and Gillespie, J. C. P., "Bioremediation, an Environmental Remediation Technology for the Bioeconomy," Trends in Biotechnology, Vol. 31, No. 6 2013, pp. 329-332. https://doi.org/10.1016/j.tibtech.2013.01.015
  24. Sayler, G. S. and Ripp, S., "Field Applications of Genetically Engineered Microorganisms for Bioremediation Processes," Environmental Biotechnology, Vol. 11, No. 3, 2000, pp. 286-289.