Abstract
Detection performance of fire detection in the outdoor depends on weather conditions, the shadow by the movement of the sun, or illumination changes. In this paper, a smoke detection in conjunction with a robust background estimate algorithm to environment change in the outdoor in daytime is proposed. Gaussian Mixture Model (GMM) is applied as background estimation, and also, statistical characteristics of smoke is applied to detect the smoke for separated candidate region. Through the experiments with input videos obtained from a various weather conditions, the proposed algorithms were useful to detect smoke in the outdoor.
실외에서 영상기반의 화재감지는 시간, 날씨 변화에 따른 조도와 그림자 등에 의하여 성능에 영향을 받는다. 본 논문에서는 주간에 화재감지를 위하여 외부조명 변화에 강건한 배경추정 알고리즘과 결합된 연기검출 방법을 제안한다. 혼합 가우스 모델(mixture Gaussian model)을 배경추정에 적용하고 분리된 후보영역에 대하여 연기의 통계적 특성을 적용하여 연기를 검출한다. 주간 야외에서 획득한 영상에 대하여 제안하는 방법이 실외 연기검출에 유용한 것을 확인한다.