DOI QR코드

DOI QR Code

Use of Bentonite and Organobentonite as Alternatives of Partial Substitution of Cement in Concrete Manufacturing

  • Lima-Guerra, D.J. (University Federal of Mato Grosso, DRM-UFMT) ;
  • Mello, I. (University Federal of Mato Grosso, DRM-UFMT) ;
  • Resende, R. (University Federal of Mato Grosso, DRM-UFMT) ;
  • Silva, R. (University Federal of Mato Grosso, DRM-UFMT)
  • Received : 2013.04.08
  • Accepted : 2013.12.29
  • Published : 2014.03.31

Abstract

In order to study the capacities of a new occurrence of Brazilian clay samples as partial replacements of cement, a bentonite sample was selected for utilization in the natural and modified forms for present study. The natural bentonite (BBT) was modified by anchorament of 3-aminopropyltrietoxisilane ($BBT_{APS}$) and 3,2-aminoethylaminopropyltrimetoxisilane (BBTAEAPS) in the surface of component minerals of bentonite sample. The original and organo-bentonite samples were characterized by elemental analysis, scanning electron microscopic and textural analyses. The values of micropore area were varying from $7.2m^2g^{-1}$ for the BBT to $12.3m^2g^{-1}$ for the $BBT_{AEAPS}$. The bentonite samples were characterized by the main variable proportion of bentonite in the natural and intercalated forms (2, 5, 10, 15, 20, 25, 30, and 35 % by weight of cement) in the replacement mode whiles the amount of cementations material. The workability, density of fresh concrete, and absorption of water decreased as the substitution of ordinary Portland cement by perceptual of natural and modified bentonite increased. The results reveal that workability decreased with decrease of the amount of natural bentonite in the concrete, same behavior is observed for bentonite functionalized, varying from 49 to 28 mm. The energetic influence of the interaction of calcium nitrate in the structure of blends was determined through the calorimetric titration procedure.

Keywords

References

  1. Ahmad, S., Barbhuiya, S. A., Elahi, A., & Iqbal, J. (2011). Effect of Pakistani bentonite on properties of mortar and concrete. Clay Minerals, 46, 85-92. https://doi.org/10.1180/claymin.2011.046.1.85
  2. ASTM. (2004). Standard test method for normal consistency of hydraulic cement. C187-98C, In: S. J. Bailey, N. C. Baldini, E. K. McElrone, K. A. Peters (Eds.), Annual book of ASTM standards cement, Lime, Gypsum, 2004; (Vol. 4, pp. 180-181).
  3. Bojumueller, A., Nennemann, G., & Lagaly, G. (2001). Enhanced pesticide adsorption by thermally modified bentonites. Applied Clay Science, 18, 277-284. https://doi.org/10.1016/S0169-1317(01)00027-8
  4. Bulut, G., Chimeddorj, M., Esenli, F., & Celik, M. S. (2009). Production of desiccants from Turkish bentonite. Applied Clay Science, 40, 141-147.
  5. Chaudhari, A., & Kumar, C. V. (2005). Intercalation of proteins into & #x03B1;-zirconium phosphates: tuning the binding affinities with phosphate functions. Microporous and Mesoporous Materials, 77, 175-187. https://doi.org/10.1016/j.micromeso.2004.08.029
  6. Dey, R., & Airoldi, C. (2008). Designed pendant chain covalently bonded to silica gel for cation removal. The Journal of Hazardous Materials, 156, 95-101. https://doi.org/10.1016/j.jhazmat.2007.12.005
  7. Diaz, U., Cantin, A., & Corma, A. (2007). Novel layered organic-inorganic hybrid materials with bridged silsesquioxanes as pillars. Chemistry of Materials, 19, 3686-3693. https://doi.org/10.1021/cm070553+
  8. Ding, S., Sun, Y., Yang, C., & Xu, B. (2009). Removal of copper from aqueous solutions by bentonite and the factors affecting it. Ministry of Science and Technology, 19, 0489-0492.
  9. Garvin, S. L., & Hayles, C. S. (1999). The chemical compatibility of cement-bentonite cut-off wall material. Construction and Building Materials, 13, 329-341. https://doi.org/10.1016/S0950-0618(99)00024-0
  10. Goubitz, K., Capkova, P., Melanova, K., Molleman, W., & Schenk, H. (2001). Structure determination of two intercalated compounds $VOPO_{4}{\cdot}(CH_{2})_{4}O$and $VOPO_{4}{\cdot}OH-(CH_{2})_{2}-O-(CH_{2})_{2}-OH$; synchrotron power diffraction and molecular modeling. Acta Crystallographica B, 57, 178-183. https://doi.org/10.1107/S0108768100015603
  11. Guerra, D. L., Lemos, V. P., Airoldi, C., & Angelica, R. S. (2006). Influence of the acid activation of pillared smectites from Amazon (Brazil) in adsorption process with butylamine. Polyhedron, 25, 2880-2890. https://doi.org/10.1016/j.poly.2006.04.015
  12. Guerra, D. L., Mendonca, E. S., Silva, R. A. R., & Lara, W. (2012). Studies of adsorption of pillarized and organofunctionalized smectite clay for $Th^{4+}$ removal. The Journal of Ceramic Science and Technology, 3, 17-28.
  13. Guerra, D. L., Silva, E. M., Lara, W., & Batista, A. C. (2011a). Removal of Hg(II) from an aqueous medium by adsorption onto natural and alkil-amine modified Brazilian bentonite. Clays and Clay Minerals, 59, 568-580. https://doi.org/10.1346/CCMN.2011.0590603
  14. Guerra, D. L., Viana, R. R., & Airoldi, C. (2009). Adsorption of mercury cation on chemical modified clay. Materials Research Bulletin, 44, 485-491. https://doi.org/10.1016/j.materresbull.2008.08.002
  15. Guerra, D. L., Viana, R. R., & Airoldi, A. (2011b). Thermochemical data for n-alkylmonoamine functionalization into lamellar silicate al-kanemite. The Journal of Chemical Thermodynamics, 43, 69-74. https://doi.org/10.1016/j.jct.2010.08.008
  16. Janchen, J., Morris, R. V., Bish, D. L., Janssen, M., & Hellwig, U. (2009). The $H_{2}O$ and $CO_{2}$ adsorption properties of phyllosilicates poor palagonitic dust and bentonite under martin environmental conditions. Icarus, 200, 463-467. https://doi.org/10.1016/j.icarus.2008.12.006
  17. Lazarin, A. M., & Airoldi, C. (2009). Thermodynamic of the nickel and cobalt removal from aqueous solution by layered crystalline organofunctionalized barium phosphate. The Journal of Chemical Thermodynamics, 41, 21-25. https://doi.org/10.1016/j.jct.2008.08.005
  18. Malkoc, E., & Nuhoglu, Y. (2005). Investigation of nickel(II) removal from aqueous solutions using tea factory waste. The Journal of Hazardous Materials B, 127, 120-128. https://doi.org/10.1016/j.jhazmat.2005.06.030
  19. Memon, S. A., Arsalan, R., Khan, S., & Lo, T. Y. (2012). Utilization of Pakistan bentonite as partial replacement of cement in concrete. Constructing Building Materials, 30, 237-242. https://doi.org/10.1016/j.conbuildmat.2011.11.021
  20. Meunier, A. (2005). Clays. Berlin, Germany: Springer. 472.
  21. Mirza, J., Riaz, M., Naseer, A., Rehman, F., Khan, A. N., & Ali, Q. (2009). Pakistan bentonite in mortars and concrete as low cost construction material. Applied Clay Science, 45, 220-226. https://doi.org/10.1016/j.clay.2009.06.011
  22. Neville, A. M. (2000). Properties of concrete (4th ed.). London, UK: Person Education Asia Pte. Ltd.
  23. Ogawa, M., Ishii, T., Miyamoto, N., & Kuroda, K. (2003). Intercalation of a cationic azobenzene into montmorillonite. Applied Clay Science, 22, 179-185. https://doi.org/10.1016/S0169-1317(02)00157-6
  24. Plee, D., Lebedenko, F., Obrecht, F., Letellier, M., & Van Damme, H. (1990). Microstrucuture, permeability and reology of bentonite-cement slurries. Cement Concrete Research, 20, 45-61. https://doi.org/10.1016/0008-8846(90)90115-E
  25. Ruiz, V. S. O., & Airoldi, C. (2004). Thermochemical data for n-alkylmonoamine intercalation into crytalline lamellar zirconium phenylphosphonate. Thermochimica Acta, 420, 73-78. https://doi.org/10.1016/j.tca.2003.10.029
  26. Shannag, M. (2000). High strength concrete containing natural pozzolan and silica fume. Cement and Concrete Composites, 22, 399-406. https://doi.org/10.1016/S0958-9465(00)00037-8
  27. Sharma, P., Singh, G., & Tomar, R. (2009). Synthesis and characterization of an analogue of heulandite: Sorption and applications for thorium(IV), europium(III), samarium(II) and iron(II) recovery from aqueous waster. Journal of Colloid and Interface Science, 332, 298-308. https://doi.org/10.1016/j.jcis.2008.12.074
  28. Sun, X., Li, C., Wu, Z., Ren, L., & Zhao, H. (2007). Adsorption of protein from model wine solution by different bentonites. Chinese Journal of Chemical Engineering, 15, 632-638. https://doi.org/10.1016/S1004-9541(07)60137-2
  29. Taylor-Lange, S. C., Riding, K. A., & Juenger, M. C. G. (2012). Increasing the reactivity of metal kaolin-cement blends using zinc oxide. Cement and Concrete Composites, 34, 834-847.
  30. Weber, W. J. Jr. (1972). Adsorption. In W. J. Weber (Ed.), Physicochemical process for water quality control. New York, NY: Wiley.
  31. Zhang, P., Wang, Y., Zhu, G. S., Shi, Z., Liu, Y. L., Yuan, H. M., et al. (2000). Hydrothermal synthesis and crystal structure of $Zn_{4}(PO_{4})_{2}(HPO_{4})2.0.5(C_{10}H_{28}N_{4}).2H_{2}O$ a new layered zinc phosphate with 12-ring cavities. Journal of Solid State Chemistry, 154, 368-374. https://doi.org/10.1006/jssc.2000.8797

Cited by

  1. Study of the impact of bentonite on the physico-mechanical and flow properties of cement grout vol.5, pp.1, 2014, https://doi.org/10.1080/23311916.2018.1446252
  2. Simulating the Long-Term Performance of Multifunctional Green-Pervious Concrete Pavement in Stormwater Runoff-Induced PAHs Remediation vol.146, pp.6, 2014, https://doi.org/10.1061/(asce)ee.1943-7870.0001695
  3. A Step towards Sustainable Self-Compacting Concrete by Using Partial Substitution of Wheat Straw Ash and Bentonite Clay Instead of Cement vol.13, pp.2, 2014, https://doi.org/10.3390/su13020824
  4. Laboratory evaluation of PAHs removal by multi-functional green pervious concrete (MGPC) pavement vol.315, pp.None, 2014, https://doi.org/10.1016/j.jclepro.2021.128032
  5. Influence of Bentonite on Mechanical and Durability Properties of High-Calcium Fly Ash Geopolymer Concrete with Natural and Recycled Aggregates vol.14, pp.24, 2014, https://doi.org/10.3390/ma14247790