References
- ACI Committee 318. (1999). Building code requirement for reinforced concrete and commentary (318R-99) (p. 391). Detroit, MI: ACI.
- American Association of State Highway and Transportation Officials (2002), AASHTO LRFD Bridge Design Specifications, 2002 Interim Revisions, pp. 305-315.
- ASCE-ACI Committee 426. (1973). The shear strength of reinforced concrete members. Journal of Structural Division, ASCE, 99(6), 1091-1187.
- ASCE-ACI Committee 445. (1998). Recent approaches to shear design of structural concrete. Journal of Structural Engineering, 124(5), 1375-1417. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375)
- Bhide, S. B., & Collins, M. P. (1989). Influence of axial tension on the shear capacity of reinforced concrete member. ACI Structural Journal, 86(5), 570-581.
- Collins, M. P., & Mitchell, D. (1991). Prestressed concrete structures (pp. 210-220). Eaglewood Cliffs, NJ: Prentice-Hall.
- Comite Euro International Du Beton (CEB/FIP)(1990), CEBFIP Model Code for Concrete Structures, Bulletin d'Information No. 124/125, p. 437.
- Commission of the European Communities (1991), Eurocode No. 2: Design of Concrete Structures, Part 1: General rules and Rules for Buildings, ENV 1992-1-1, p. 253.
- Hsu, T. T. C. (1993). Unified theory of reinforced concrete (pp. 250-350). Boca Raton, FL: CRC.
- Kani, G. N. J. (1964). The riddle of shear failure and its solution. ACI Journal, 61(4), 441-467.
- Kim, W., & Jeong, J.-P. (2011a). Non-Bernoulli-compatibility truss model for RC member subjected to combined action of flexure and shear, part I-its derivation of theoretical concept. KSCE Journal of Civil Engineering, 15(1), 101-108. https://doi.org/10.1007/s12205-011-0662-6
- Kim, W., & Jeong, J.-P. (2011b). Non-Bernoulli-Compatibility truss model for RC member subjected to combined action of flexure and shear, part II-its practical solution. KSCE Journal of Civil Engineering, 15(1), 109-117. https://doi.org/10.1007/s12205-011-0663-5
- Kim, W., & Jeong, J.-P. (2011c). Decoupling of arch action in shear-critical reinforced concrete beam. ACI Structural Journal, 108(4), 395-404.
- Kim, D.-J., Kim, W., & White, R. N. (1998). Prediction of reinforcement tension produced by arch action in RC beams. ASCE, Journal of Structural Engineering, 124(6), 611-622. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(611)
- Leonhardt, F. (1965). Reducing the shear reinforcement in reinforced concrete beams and slabs. Magazine of Concrete Research, 17(53), 187-198. https://doi.org/10.1680/macr.1965.17.53.187
- Lorentsen, M. (1965). Theory for the combined action of bending moment and shear in reinforced concrete and prestressed concrete beams. ACI Journal, 62(4), 420-430.
- Marti, P. (1985). Basic tools of reinforced concrete beam design. ACI Journal, 82(1), 46-56.
- Nielsen, M. P. (1984). Limit analysis and Concrete Plasticity. Eaglewood Cliffs, NJ: Prentice-Hall. 420.
- Park, R., & Paulay, T. (1975). Reinforced concrete structures (pp. 133-138). New York, NY: Wiley.
- Ramirez, J. A., & Breen, J. A. (1991). Evaluation of a modified truss model approach for beams in shear. ACI Structural Journal, 88(5), 562-571.
- Schlaich, J., Schafer, I., & Jennewein, M. (1987). Towards a consistent design of structural concrete. PCI Journal, 32(3), 74-150. https://doi.org/10.15554/pcij.05011987.74.150
- Taylor, H. P. J. (1974). The fundamental behavior of reinforced concrete beams in bending and shear (pp. 43-77)., Detroit, MI: ACI SP-42.
- Vecchio, F. J., & Collins, M. P. (1986). The modified compression field theory for reinforced concrete elements subjected to shear. ACI Journal, 83(2), 219-231.
Cited by
- 아치작용을 고려한 PSC보의 복부전단거동 vol.35, pp.1, 2014, https://doi.org/10.12652/ksce.2015.35.1.0085
- Modeling of RC Frame Buildings for Progressive Collapse Analysis vol.10, pp.1, 2014, https://doi.org/10.1007/s40069-016-0126-y
- The Use of Advanced Optical Measurement Methods for the Mechanical Analysis of Shear Deficient Prestressed Concrete Members vol.10, pp.2, 2014, https://doi.org/10.1007/s40069-016-0135-x
- Computing the Refined Compression Field Theory vol.10, pp.2, 2014, https://doi.org/10.1007/s40069-016-0140-0
- Experimental Verification of Resistance-Demand Approach for Shear of HSC Beams vol.10, pp.4, 2014, https://doi.org/10.1007/s40069-016-0168-1
- Single Web Shear Element Model for Shear Strength of RC Beams with Stirrups vol.12, pp.1, 2014, https://doi.org/10.1186/s40069-018-0252-9
- RC Arch Deck Development and Performance Evaluation for Enhanced Deck Width vol.12, pp.1, 2014, https://doi.org/10.1186/s40069-018-0295-y
- Experimental Evaluation of Relationship between Shear Deformation and Pinching in Lightweight-aggregate Reinforced Concrete Beams vol.23, pp.1, 2014, https://doi.org/10.1007/s12205-018-0555-z
- Assessment of Building Robustness against Disproportionate Collapse vol.146, pp.12, 2014, https://doi.org/10.1061/(asce)st.1943-541x.0002820
- Theoretical Evaluation Equation for Capacities of Beam Action in Shear Resistance Mechanisms of RC Beams Reflecting Dowel Action of Main Reinforcements vol.19, pp.9, 2021, https://doi.org/10.3151/jact.19.1025
- Influence of Patching on the Shear Failure of Reinforced Concrete Beam without Stirrup vol.6, pp.7, 2021, https://doi.org/10.3390/infrastructures6070097