DOI QR코드

DOI QR Code

Mechanism Underlying Curcumin-induced Apoptosis and Cell Cycle Arrest on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line

  • Moon, Jung-Bon (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Lee, Kee-Hyun (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Kim, In-Ryoung (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Kim, Gyoo-Cheon (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Kwak, Hyun-Ho (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Park, Bong-Soo (Department of Oral Anatomy, School of Dentistry, Pusan National University)
  • 투고 : 2014.02.13
  • 심사 : 2014.03.11
  • 발행 : 2014.03.31

초록

Several studies have shown that curcumin, which is derived from the rhizomes of turmeric, possesses antimicrobial, antioxidant and anti-inflammatory properties. The antitumor properties of curcumin have also now been demonstrated more recently in different cancers. This study was undertaken to investigate the modulation of cell cycle-related proteins and the mechanisms underlying apoptosis induction by curcumin in the SCC25 human tongue squamous cell carcinoma cell line. Curcumin treatment of the SCC25 cells resulted in a time- and dose-dependent reduction in cell viability and cell growth, and onset of apoptotic cell death. The curcumin-treated SCC25 cells showed several types of apoptotic manifestations, such as nuclear condensation, DNA fragmentation, reduced MMP and proteasome activity, and a decreased DNA content. In addition, the treated SCC25 cells showed a release of cytochrome c into the cytosol, translocation of AIF and DFF40/CAD into the nuclei, a significant shift in the Bax/Bcl-2 ratio, and the activation of caspase-9, caspase-7, caspase-6, caspase-3, PARP, lamin A/C, and DFF45/ICAD. Furthermore, curcumin exposure resulted in a downregulation of G1 cell cycle-related proteins and upregulation of $p27^{KIP1}$. Taken together, our findings demonstrate that curcumin strongly inhibits cell proliferation by modulating the expression of G1 cell cycle-related proteins and inducing apoptosis via proteasomal, mitochondrial, and caspase cascades in SCC25 cells.

키워드

참고문헌

  1. Aggarwal S, Takada Y, Singh S, Myers JN, Aggarwal BB. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor‐kappaB signaling. Int J Cancer 2004;111:679‐692.
  2. Fiorillo C, Becatti M, Pensalfini A, Cecchi C, Lanzilao L, Donzelli G, Nassi N, Giannini L, Borchi E, Nassi P. Curcumin protects cardiac cells against ischemia‐reperfusion injury: effects on oxidative stress, NF‐kappaB, and JNK pathways. Free Radic Biol Med. 2008;45:839‐846. https://doi.org/10.1016/j.freeradbiomed.2008.06.013
  3. Panicker SR, Kartha CC. Curcumin attenuates glucoseinduced monocyte chemoattractant protein‐1 synthesis in aortic endothelial cells by modulating the nuclear factorkappaB pathway. Pharmacology 2010;85:18‐26.
  4. Chuang SE, Yeh PY, Lu YS, Lai GM, Liao CM, Gao M, Cheng AL. Basal levels and patterns of anticancer druginduced activation of nuclear factor‐kappaB (NF‐kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol. 2002;63:1709‐1716. https://doi.org/10.1016/S0006-2952(02)00931-0
  5. Nakamura K, Yasunaga Y, Segawa T, Ko D, Moul JW, Srivastava S, Rhim JS. Curcumin down‐regulates AR gene expression and activation in prostate cancer cell lines. Int J Oncol. 2002;21:825‐830.
  6. Han SS, Keum YS, Seo HJ, Surh YJ. Curcumin suppresses activation of NF‐kappaB and AP‐1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol. 2002;35:337‐342. https://doi.org/10.5483/BMBRep.2002.35.3.337
  7. Bachmeier BE, Mohrenz IV, Mirisola V, Schleicher E, Romeo F, Hohneke C, Jochum M, Nerlich AG, Pfeffer U. Curcumin downregulates the inflammatory cytokines CXCL1 and ‐2 in breast cancer cells via NFkappaB. Carcinogenesis 2008;29:779‐789.
  8. Aravindan N, Madhusoodhanan R, Ahmad S, Johnson D, Herman TS. Curcumin inhibits NFkappaB mediated radioprotection and modulate apoptosis related genes in human neuroblastoma cells. Cancer Biol Ther. 2008;7:569‐576.
  9. Wang D, Veena MS, Stevenson K, Tang C, Ho B, Suh JD, Duarte VM, Faull KF, Mehta K, Srivatsan ES, Wang MB. Liposome‐encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor kappaB by an AKTindependent pathway. Clin Cancer Res. 2008;14:6228‐6236. https://doi.org/10.1158/1078-0432.CCR-07-5177
  10. Carson DA, Ribeiro JM. Apoptosis and disease. Lancet. 1993;341:1251‐1254. https://doi.org/10.1016/0140-6736(93)91154-E
  11. Ohta K, Yamashita N. Apoptosis of eosinophils and lymphocytes in allergic inflammation. J Allergy Clin Immunol. 1999;104:14‐21. https://doi.org/10.1016/S0091-6749(99)70107-7
  12. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251‐306. https://doi.org/10.1016/S0074-7696(08)62312-8
  13. Williams GT. Programmed cell death: apoptosis and oncogenesis. Cell 1991;65:1097‐1098.
  14. Clayman GL, Ebihara S, Terada M, Mukai K, Goepfert H. Report of the Tenth International Symposium of the Foundation for Promotion of Cancer Research: Basic and Clinical Research in Head and Neck cancer. Jpn J Clin Oncol. 1997;27:361‐368. https://doi.org/10.1093/jjco/27.5.361
  15. Shen J, Huang C, Jiang L, Gao F, Wang Z, Zhang Y, Bai J, Zhou H, Chen Q. Enhancement of cisplatin induced apoptosis by suberoylanilide hydroxamic acid in human oral squamous cell carcinoma cell lines. Biochem Pharmacol. 2007;73:1901‐1909.
  16. Bell RB, Kademani D, Homer L, Dierks EJ, Potter BE. Tongue cancer: Is there a difference in survival compared with other subsites in the oral cavity? J Oral Maxillofac Surg. 2007;65:229‐236. https://doi.org/10.1016/j.joms.2005.11.094
  17. Lo WL, Kao SY, Chi LY, Wong YK, Chang RC. Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: factors affecting survival. J Oral Maxillofac Surg. 2003;61:751‐758. https://doi.org/10.1016/S0278-2391(03)00149-6
  18. Shintani S, Li C, Mihara M, Klosek SK, Terakado N, Hino S, Hamakawa H. Anti‐tumor effect of radiation response by combined treatment with angiogenesis inhibitor, TNP‐470, in oral squamous cell carcinoma. Oral Oncol. 2006;42:66‐72. https://doi.org/10.1016/j.ooe.2005.09.002
  19. Prince A, Aguirre‐Ghizo J, Genden E, Posner M, Sikora A. Head and neck squamous cell carcinoma: new translational therapies. Mt Sinai J Med. 2010;77:684‐699. https://doi.org/10.1002/msj.20216
  20. Zlotogorski A, Dayan A, Dayan D, Chaushu G, Salo T, Vered M. Nutraceuticals as new treatment approaches for oral cancer: II. Green tea extracts and resveratrol. Oral Oncol. 2013;49:502‐506. https://doi.org/10.1016/j.oraloncology.2013.02.011
  21. Lee UL, Choi SW. The chemopreventive properties and therapeutic modulation of green tea polyphenols in oral squamous cell carcinoma. ISRN Oncol. 2011;2011:403707.
  22. Yen CY, Chiu CC, Haung RW, Yeh CC, Huang KJ, Chang KF, Hseu YC, Chang FR, Chang HW, Wu YC. Antiproliferative effects of goniothalamin on Ca9‐22 oral cancer cells through apoptosis, DNA damage and ROS induction. Mutat Res. 2012;747:253‐258. https://doi.org/10.1016/j.mrgentox.2012.06.003
  23. Shih YH, Chang KW, Hsia SM, Yu CC, Fuh LJ, Chi TY, Shieh TM. In vitro antimicrobial and anticancer potential of hinokitiol against oral pathogens and oral cancer cell lines. Microbiol Res. 2013;168:254‐262. https://doi.org/10.1016/j.micres.2012.12.007
  24. Yang CW, Chang CL, Lee HC, Chi CW, Pan JP, Yang WC. Curcumin induces the apoptosis of human monocytic leukemia THP‐1 cells via the activation of JNK/ERK pathways. BMC Complement Altern Med. 2012;12:22. https://doi.org/10.1186/1472-6882-12-22
  25. Lee JY, Lee YM, Chang GC, Yu SL, Hsieh WY, Chen JJ, Chen HW, Yang PC. Curcumin induces EGFR degradation in lung adenocarcinoma and modulates p38 activation in intestine: the versatile adjuvant for gefitinib therapy. PLoS One 2011;6:e23756. https://doi.org/10.1371/journal.pone.0023756
  26. Wu SH, Hang LW, Yang JS, Chen HY, Lin HY, Chiang JH, Lu CC, Yang JL, Lai TY, Ko YC, Chung JG. Curcumin induces apoptosis in human non‐small cell lung cancer NCI‐H460 cells through ER stress and caspase cascade‐ and mitochondria‐dependent pathways. Anticancer Res. 2010;30:2125‐2133.
  27. Kim HM, Lee EH, Hong SH, Song HJ, Shin MK, Kim SH, Shin TY. Effect of Syzygium aromaticum extract on immediate hypersensitivity in rats. J Ethnopharmacol. 1998;60:125‐131. https://doi.org/10.1016/S0378-8741(97)00143-8
  28. Kim HM, Yi JM, Lim KS. Magnoliae flos inhibits mast celldependent immediate‐type allergic reactions. Pharmacol Res. 1999;39:107‐111. https://doi.org/10.1006/phrs.1998.0414
  29. Seo N, Ito T, Wang N, Yao X, Tokura Y, Furukawa F, Takigawa M, Kitanaka S. Anti‐allergic Psidium guajava extracts exert an antitumor effect by inhibition of T regulatory cells and resultant augmentation of Th1 cells. Anticancer Res. 2005;25:3763‐3770.
  30. Angelini A, Di Ilio C, Castellani ML, Conti P, Cuccurullo F. Modulation of multidrug resistance p‐glycoprotein activity by flavonoids and honokiol in human doxorubicin‐ resistant sarcoma cells (MES‐SA/DX‐5): implications for natural sedatives as chemosensitizing agents in cancer therapy. J Biol Regul Homeost Agents 2010;24:197‐205.
  31. Ravindran J, Prasad S, Aggarwal BB. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J. 2009;11:495‐510. https://doi.org/10.1208/s12248-009-9128-x
  32. Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH. Notch‐1 down ‐regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer 2006;106:2503‐2513.
  33. Sarkar FH, Li Y, Wang Z, Padhye S. Lesson learned from nature for the development of novel anti‐cancer agents: implication of isoflavone, curcumin, and their synthetic analogs. Curr Pharm Des. 2010;16:1801‐1812. https://doi.org/10.2174/138161210791208956
  34. Meng L, Kwok BH, Sin N, Crews CM. Eponemycin exerts its antitumor effect through the inhibition of proteasome function. Cancer Res. 1999;59:2798‐2801.
  35. Drexler HC, Risau W, Konerding MA. Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J. 2000;14:65‐77. https://doi.org/10.1096/fasebj.14.1.65
  36. Grimm LM, Goldberg AL, Poirier GG, Schwartz LM, Osborne BA. Proteasomes play an essential role in thymocyte apoptosis. EMBO J. 1996;15:3835‐3844.
  37. Orlowski RZ. The role of the ubiquitin‐proteasome pathway in apoptosis. Cell Death Differ. 1999;6:303‐313. https://doi.org/10.1038/sj.cdd.4400505
  38. Li B, Dou QP. Bax degradation by the ubiquitin/proteasomedependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci USA. 2000;97:3850‐3855. https://doi.org/10.1073/pnas.070047997
  39. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000;6:513‐519. https://doi.org/10.1038/74994
  40. Galluzzi L, Morselli E, Kepp O, Vitale I, Rigoni A, Vacchelli E, Michaud M, Zischka H, Castedo M, Kroemer G. Mitochondrial gateways to cancer. Mol Aspects Med. 2010;31:1‐20. https://doi.org/10.1016/j.mam.2009.08.002
  41. Prabhu SB, Khalsa JK, Banerjee H, Das A, Srivastava S, Mattoo HR, Thyagarajan K, Tanwar S, Das DS, Majumdar SS, George A, Bal V, Durdik JM, Rath S. Role of apoptosisinducing factor (Aif) in the T cell lineage. Indian J Med Res. 2013;138:577‐590.
  42. Boland ML, Chourasia AH, Macleod KF. Mitochondrial Dysfunction in Cancer. Front Oncol. 2013;3:292.
  43. Braun RJ. Mitochondrion‐mediated cell death: dissecting yeast apoptosis for a better understanding of neurodegeneration. Front Oncol. 2012;2:182.
  44. Orrenius S. Mitochondrial regulation of apoptotic cell death. Toxicol Lett. 2004;149:19‐23. https://doi.org/10.1016/j.toxlet.2003.12.017
  45. Hengartner MO. The biochemistry of apoptosis. Nature 2000;407:770‐776.
  46. Barczyk K, Kreuter M, Pryjma J, Booy EP, Maddika S, Ghavami S, Berdel WE, Roth J, Los M. Serum cytochrome c indicates in vivo apoptosis and can serve as a prognostic marker during cancer therapy. Int J Cancer 2005;116:167‐173.
  47. Tsujimoto Y, Shimizu S. Bcl‐2 family: life‐or‐death switch.FEBS Lett. 2000;466:6‐10. https://doi.org/10.1016/S0014-5793(99)01761-5
  48. Kuwana T, Newmeyer DD. Bcl‐2‐family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol. 2003;15:691‐699. https://doi.org/10.1016/j.ceb.2003.10.004
  49. Wagenknecht B, Hermisson M, Groscurth P, Liston P, Krammer PH, Weller M. Proteasome inhibitor‐induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem. 2000;75:2288‐2297.
  50. Marshansky V, Wang X, Bertrand R, Luo H, Duguid W, Chinnadurai G, Kanaan N, Vu MD, Wu J. Proteasomes modulate balance among proapoptotic and antiapoptotic Bcl‐ 2 family members and compromise functioning of the electron transport chain in leukemic cells. J Immunol. 2001;166:3130‐3142. https://doi.org/10.4049/jimmunol.166.5.3130
  51. Zou H, Li Y, Liu X, Wang X. An APAF‐1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase‐9. J Biol Chem. 1999;274:11549‐11556. https://doi.org/10.1074/jbc.274.17.11549
  52. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, Kroemer G. Mitochondrio‐nuclear translocation of AIF in apoptosis and necrosis. FASEB J. 2000;14:729‐739. https://doi.org/10.1096/fasebj.14.5.729
  53. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three‐dimensional structure of the apoptosome: implications for assembly, procaspase‐9 binding, and activation. Mol Cell 2002;9:423‐432.
  54. Gross A, McDonnell JM, Korsmeyer SJ. BCL‐2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13:1899‐1911. https://doi.org/10.1101/gad.13.15.1899
  55. Porter AG. Protein translocation in apoptosis. Trends Cell Biol. 1999;9:394‐401. https://doi.org/10.1016/S0962-8924(99)01624-4
  56. Cheng AC, Jian CB, Huang YT, Lai CS, Hsu PC, Pan MH. Induction of apoptosis by Uncaria tomentosa through reactive oxygen species production, cytochrome c release, and caspases activation in human leukemia cells. Food Chem Toxicol. 2007;45:2206‐2218. https://doi.org/10.1016/j.fct.2007.05.016
  57. Lee SC, Chan J, Clement MV, Pervaiz S. Functional proteomics of resveratrol‐induced colon cancer cell apoptosis: caspase‐6‐mediated cleavage of lamin A is a major signaling loop. Proteomics 2006;6:2386‐2394.
  58. Ilmarinen‐Salo P, Moilanen E, Kankaanranta H. Nitric oxide induces apoptosis in GM‐CSF‐treated eosinophils via caspase ‐6‐dependent lamin and DNA fragmentation. Pulm Pharmacol Ther. 2010;23:365‐371. https://doi.org/10.1016/j.pupt.2010.04.001
  59. Liu JD, Wang YJ, Chen CH, Yu CF, Chen LC, Lin JK, Liang YC, Lin SY, Ho YS. Molecular mechanisms of G0/G1 cellcycle arrest and apoptosis induced by terfenadine in human cancer cells. Mol Carcinog. 2003;37:39‐50. https://doi.org/10.1002/mc.10118
  60. Zheng R, Zhang Z, Lv X, Fan J, Chen Y, Wang Y, Tan R, Liu Y, Zhou Q. Polycystin‐1 induced apoptosis and cell cycle arrest in G0/G1 phase in cancer cells. Cell Biol Int. 2008;32:427‐435. https://doi.org/10.1016/j.cellbi.2007.12.014
  61. Pavletich NP. Mechanisms of cyclin‐dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol. 1999;287:821‐828. https://doi.org/10.1006/jmbi.1999.2640
  62. Polyak K, Lee MH, Erdjument‐Bromage H, Koff A, Roberts JM, Tempst P, Massague J. Cloning of p27Kip1, a cyclindependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994;78:59‐66.
  63. Coats S, Flanagan WM, Nourse J, Roberts JM. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 1996;272:877‐880.
  64. Colman MS, Afshari CA, Barrett JC. Regulation of p53 stability and activity in response to genotoxic stress. Mutat Res. 2000;462:179‐188. https://doi.org/10.1016/S1383-5742(00)00035-1
  65. Teyssier F, Bay JO, Dionet C, Verrelle P. [Cell cycle regulation after exposure to ionizing radiation]. Bull Cancer 1999;86:345‐357.