DOI QR코드

DOI QR Code

Cordyceps militaris alleviates non-alcoholic fatty liver disease in ob/ob mice

  • Choi, Ha-Neul (Department of Smart Food and Drugs, School of Food and Life Science, Inje University) ;
  • Jang, Yang-Hee (Department of Smart Food and Drugs, School of Food and Life Science, Inje University) ;
  • Kim, Min-Joo (Laboratory of Nutritional Analysis, Hurom Co., Ltd.) ;
  • Seo, Min Jeong (Department of Biotechnology, Dong-A University) ;
  • Kang, Byoung Won (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Jeong, Yong Kee (Department of Biotechnology, Dong-A University) ;
  • Kim, Jung-In (Department of Smart Food and Drugs, School of Food and Life Science, Inje University)
  • Received : 2013.07.09
  • Accepted : 2013.08.16
  • Published : 2014.04.01

Abstract

BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is becoming an important public health problem as metabolic syndrome and type 2 diabetes have become epidemic. In this study we investigated the protective effect of Cordyceps militaris (C. militaris) against NAFLD in an obese mouse model. MATERIALS/METHODS: Four-week-old male ob/ob mice were fed an AIN-93G diet or a diet containing 1% C. militaris water extract for 10 weeks after 1 week of adaptation. Serum glucose, insulin, free fatty acid (FFA), alanine transaminase (ALT), and proinflammatory cytokines were measured. Hepatic levels of lipids, glutathione (GSH), and lipid peroxide were determined. RESULTS: Consumption of C. militaris significantly decreased serum glucose, as well as homeostasis model assessment for insulin resistance (HOMA-IR), in ob/ob mice. In addition to lowering serum FFA levels, C. militaris also significantly decreased hepatic total lipids and triglyceride contents. Serum ALT activities and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) levels were reduced by C. militaris. Consumption of C. militaris increased hepatic GSH and reduced lipid peroxide levels. CONCLUSIONS: These results indicate that C. militaris can exert protective effects against development of NAFLD, partly by reducing inflammatory cytokines and improving hepatic antioxidant status in ob/ob mice.

Keywords

References

  1. Sanyal AJ; American Gastroenterological Association. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology 2002; 123:1705-25. https://doi.org/10.1053/gast.2002.36572
  2. Petta S, Muratore C, Craxi A. Non-alcoholic fatty liver disease pathogenesis: the present and the future. Dig Liver Dis 2009;41: 615-25. https://doi.org/10.1016/j.dld.2009.01.004
  3. Day CP, James OF. Steatohepatitis: a tale of two "hits"? Gastroenterology 1998;114:842-5. https://doi.org/10.1016/S0016-5085(98)70599-2
  4. Salt WB 2nd. Nonalcoholic fatty liver disease (NAFLD): a comprehensive review. J Insur Med 2004;36:27-41.
  5. Ahmed MH, Abu EO, Byrne CD. Non-Alcoholic Fatty Liver Disease (NAFLD): new challenge for general practitioners and important burden for health authorities? Prim Care Diabetes 2010;4:129-37. https://doi.org/10.1016/j.pcd.2010.02.004
  6. Day CP. From fat to inflammation. Gastroenterology 2006;130: 207-10. https://doi.org/10.1053/j.gastro.2005.11.017
  7. Marchesini G, Forlani G. NASH: from liver diseases to metabolic disorders and back to clinical hepatology. Hepatology 2002;35: 497-9. https://doi.org/10.1053/jhep.2002.31551
  8. Tilg H, Moschen AR. Insulin resistance, inflammation, and nonalcoholic fatty liver disease. Trends Endocrinol Metab 2008;19:371-9. https://doi.org/10.1016/j.tem.2008.08.005
  9. Lebovics E, Rubin J. Non-alcoholic fatty liver disease (NAFLD): why you should care, when you should worry, what you should do. Diabetes Metab Res Rev 2011;27:419-24. https://doi.org/10.1002/dmrr.1198
  10. Angulo P. Obesity and nonalcoholic fatty liver disease. Nutr Rev 2007;65:S57-63. https://doi.org/10.1301/nr.2007.jun.S57-S63
  11. Ibrahim MA, Kelleni M, Geddawy A. Nonalcoholic fatty liver disease: current and potential therapies. Life Sci 2013;92:114-8. https://doi.org/10.1016/j.lfs.2012.11.004
  12. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002;346: 1221-31. https://doi.org/10.1056/NEJMra011775
  13. Paterson RR. Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 2008;69:1469-95. https://doi.org/10.1016/j.phytochem.2008.01.027
  14. Ng TB, Wang HX. Pharmacological actions of Cordyceps, a prized folk medicine. J Pharm Pharmacol 2005;57:1509-19. https://doi.org/10.1211/jpp.57.12.0001
  15. Yu HM, Wang BS, Huang SC, Duh PD. Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J Agric Food Chem 2006;54: 3132-8. https://doi.org/10.1021/jf053111w
  16. Zhan Y, Dong CH, Yao YJ. Antioxidant activities of aqueous extract from cultivated fruit-bodies of Cordyceps militaris (L.) Link in vitro. J Integr Plant Biol 2006;48:1365-70. https://doi.org/10.1111/j.1744-7909.2006.00345.x
  17. Wang BS, Lee CP, Chen ZT, Yu HM, Duh PD. Comparison of the hepatoprotective activity between cultured Cordyceps militaris and natural Cordyceps sinensis. J Funct Foods 2012;4:489-95. https://doi.org/10.1016/j.jff.2012.02.009
  18. Jo WS, Choi YJ, Kim HJ, Lee JY, Nam BH, Lee JD, Lee SW, Seo SY, Jeong MH. The anti-inflammatory effects of water extract from Cordyceps militaris in murine macrophage. Mycobiology 2010;38: 46-51. https://doi.org/10.4489/MYCO.2010.38.1.046
  19. Anstee QM, Goldin RD. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 2006;87:1-16. https://doi.org/10.1111/j.0959-9673.2006.00465.x
  20. Weisberg SP, Leibel R, Tortoriello DV. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology 2008;149:3549-58. https://doi.org/10.1210/en.2008-0262
  21. Bruno RS, Dugan CE, Smyth JA, DiNatale DA, Koo SI. Green tea extract protects leptin-deficient, spontaneously obese mice from hepatic steatosis and injury. J Nutr 2008;138:323-31. https://doi.org/10.1093/jn/138.2.323
  22. Massart J, Robin MA, Noury F, Fautrel A, Letteron P, Bado A, Eliat PA, Fromenty B. Pentoxifylline aggravates fatty liver in obese and diabetic ob/ob mice by increasing intestinal glucose absorption and activating hepatic lipogenesis. Br J Pharmacol 2012;165:1361-74. https://doi.org/10.1111/j.1476-5381.2011.01580.x
  23. Zhang G, Huang Y, Bian Y, Wong JH, Ng TB, Wang H. Hypoglycemic activity of the fungi Cordyceps militaris, Cordyceps sinensis, Tricholoma mongolicum, and Omphalia lapidescens in streptozotocin-induced diabetic rats. Appl Microbiol Biotechnol 2006;72:1152-6. https://doi.org/10.1007/s00253-006-0411-9
  24. Choi HN, Kang MJ, Jeong SM, Seo MJ, Kang BW, Jeong YK, Kim JI. Effect of Dongchunghacho (Cordyceps militaris) on hyperglycemia and dyslipidemia in type 2 diabetic db/db mice. Food Sci Biotechnol 2012;21:1157-62. https://doi.org/10.1007/s10068-012-0151-9
  25. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993;123:1939-51. https://doi.org/10.1093/jn/123.11.1939
  26. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9. https://doi.org/10.1007/BF00280883
  27. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957;226:497-509.
  28. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8. https://doi.org/10.1016/0003-2697(79)90738-3
  29. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959;82: 70-7. https://doi.org/10.1016/0003-9861(59)90090-6
  30. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 1976;72:248-54. https://doi.org/10.1016/0003-2697(76)90527-3
  31. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995; 269:543-6. https://doi.org/10.1126/science.7624777
  32. Koteish A, Mae Diehl A. Animal models of steatohepatitis. Best Pract Res Clin Gastroenterol 2002;16:679-90. https://doi.org/10.1053/bega.2002.0332
  33. Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab 2008;294:E15-26. https://doi.org/10.1152/ajpendo.00645.2007
  34. Choi SB, Park CH, Choi MK, Jun DW, Park S. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Biosci Biotechnol Biochem 2004;68:2257-64. https://doi.org/10.1271/bbb.68.2257
  35. Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM. Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 1989;83:1168-73. https://doi.org/10.1172/JCI113997
  36. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005;115:1343-51. https://doi.org/10.1172/JCI23621
  37. Gauthier MS, Couturier K, Latour JG, Lavoie JM. Concurrent exercise prevents high-fat-diet-induced macrovesicular hepatic steatosis. J Appl Physiol (1985) 2003;94:2127-34. https://doi.org/10.1152/japplphysiol.01164.2002
  38. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 1994;43:1271-8.
  39. Senn JJ, Klover PJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, Mooney RA. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 2003;278:13740-6. https://doi.org/10.1074/jbc.M210689200
  40. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116:1494-505. https://doi.org/10.1172/JCI26498
  41. Yang S, Zhu H, Li Y, Lin H, Gabrielson K, Trush MA, Diehl AM. Mitochondrial adaptations to obesity-related oxidant stress. Arch Biochem Biophys 2000;378:259-68. https://doi.org/10.1006/abbi.2000.1829
  42. Ramesh T, Yoo SK, Kim SW, Hwang SY, Sohn SH, Kim IW, Kim SK. Cordycepin (3'-deoxyadenosine) attenuates age-related oxidative stress and ameliorates antioxidant capacity in rats. Exp Gerontol 2012;47:979-87. https://doi.org/10.1016/j.exger.2012.09.003
  43. Wild AC, Moinova HR, Mulcahy RT. Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem 1999;274:33627-36. https://doi.org/10.1074/jbc.274.47.33627
  44. Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother 2003;57:145-55. https://doi.org/10.1016/S0753-3322(03)00043-X

Cited by

  1. Xyloketal B Attenuates Fatty Acid-Induced Lipid Accumulation via the SREBP-1c Pathway in NAFLD Models vol.15, pp.6, 2014, https://doi.org/10.3390/md15060163
  2. Acremonium terricola culture plays anti-inflammatory and antioxidant roles by modulating MAPK signaling pathways in rats with lipopolysaccharide-induced mastitis vol.64, pp.None, 2014, https://doi.org/10.29219/fnr.v64.3649