DOI QR코드

DOI QR Code

Rediscovery of Nefopam for the Treatment of Neuropathic Pain

  • Kim, Kyung Hoon (Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University) ;
  • Abdi, Salahadin (Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center)
  • Received : 2013.09.16
  • Accepted : 2013.12.05
  • Published : 2014.04.01

Abstract

Nefopam (NFP) is a non-opioid, non-steroidal, centrally acting analgesic drug that is derivative of the nonsedative benzoxazocine, developed and known in 1960s as fenazocine. Although the mechanisms of analgesic action of NFP are not well understood, they are similar to those of triple neurotransmitter (serotonin, norepinephrine, and dopamine) reuptake inhibitors and anticonvulsants. It has been used mainly as an analgesic drug for nociceptive pain, as well as a treatment for the prevention of postoperative shivering and hiccups. Based on NFP's mechanisms of analgesic action, it is more suitable for the treatment of neuropathic pain. Intravenous administration of NFP should be given in single doses of 20 mg slowly over 15-20 min or with continuous infusion of 60-120 mg/d to minimize adverse effects, such as nausea, cold sweating, dizziness, tachycardia, or drowsiness. The usual dose of oral administration is three to six times per day totaling 90-180 mg. The ceiling effect of its analgesia is uncertain depending on the mechanism of pain relief. In conclusion, the recently discovered dual analgesic mechanisms of action, namely, a) descending pain modulation by triple neurotransmitter reuptake inhibition similar to antidepressants, and b) inhibition of long-term potentiation mediated by NMDA from the inhibition of calcium influx like gabapentinoid anticonvulsants or blockade of voltage-sensitive sodium channels like carbamazepine, enable NFP to be used as a therapeutic agent to treat neuropathic pain.

Keywords

References

  1. Gregori-Puigjane E, Setola V, Hert J, Crews BA, Irwin JJ, Lounkine E, et al. Identifying mechanism-of-action targets for drugs and probes. Proc Natl Acad Sci U S A 2012; 109: 11178-83. https://doi.org/10.1073/pnas.1204524109
  2. Moore RA, Derry S, McQuay HJ, Wiffen PJ. Single dose oral analgesics for acute postoperative pain in adults. Cochrane Database Syst Rev 2011; (9): CD008659.
  3. Alfonsi P, Adam F, Passard A, Guignard B, Sessler DI, Chauvin M. Nefopam, a nonsedative benzoxazocine analgesic, selectively reduces the shivering threshold in unanesthetized subjects. Anesthesiology 2004; 100: 37-43. https://doi.org/10.1097/00000542-200401000-00010
  4. Heel RC, Brogden RN, Pakes GE, Speight TM, Avery GS. Nefopam: a review of its pharmacological properties and therapeutic efficacy. Drugs 1980; 19: 249-67. https://doi.org/10.2165/00003495-198019040-00001
  5. Podranski T, Bouillon TW, Riva T, Kurz AM, Oehmke MJ. Compartmental pharmacokinetics of nefopam during mild hypothermia. Br J Anaesth 2012; 108: 784-91. https://doi.org/10.1093/bja/aer517
  6. Bassett JR, Cairncross KD, Hacket NB, Story M. Studies on the peripheral pharmacology of fenazoxine, a potential antidepressant drug. Br J Pharmacol 1969; 37: 69-78. https://doi.org/10.1111/j.1476-5381.1969.tb09523.x
  7. Tobin WE, Gold RH. Nefopam hydrochloride: a novel muscle relaxant. J Clin Pharmacol New Drugs 1972; 12: 230-8. https://doi.org/10.1002/j.1552-4604.1972.tb00167.x
  8. Bolt AG, Graham G, Wilson P. Stereoselective demethylation of the enantiomers of nefopam, an experimental antidepressant and skeletal muscle relaxant. Xenobiotica 1974; 4: 355-63. https://doi.org/10.3109/00498257409052111
  9. Koe BK. Molecular geometry of inhibitors of the uptake of catecholamines and serotonin in synaptosomal preparations of rat brain. J Pharmacol Exp Ther 1976; 199: 649-61.
  10. Cohen A. Nefopam hydrochloride for pain relief. Curr Ther Res Clin Exp 1974; 16: 184-93.
  11. Klotz AL. Long-term safety of Nefopam hydrochloride (Acupan), a new analgesic formulation. Curr Ther Res Clin Exp 1974; 16: 602-8.
  12. Workmon FC, Winter L Jr. A clinical evaluation of nefopam hydrochloride (Acupan): a new analgesic. Curr Ther Res Clin Exp 1974; 16: 609-16.
  13. Kolodny AL, Winter L Jr. Further clinical evaluations of nefopam hydrochloride, a new analgesic. Curr Ther Res Clin Exp 1975; 17: 519-24.
  14. Kakkar M, Derry S, Moore RA, McQuay HJ. Single dose oral nefopam for acute postoperative pain in adults. Cochrane Database Syst Rev 2009; (3): CD007442.
  15. Izzo V, Mariconti P, Tiengo M. Action and effectiveness of nefopam chloride in the control of postoperative shivering. Minerva Anestesiol 1991; 57: 760-2.
  16. Kim YA, Kweon TD, Kim M, Lee HI, Lee YJ, Lee KY. Comparison of meperidine and nefopam for prevention of shivering during spinal anesthesia. Korean J Anesthesiol 2013; 64: 229-33. https://doi.org/10.4097/kjae.2013.64.3.229
  17. Park SM, Mangat HS, Berger K, Rosengart AJ. Efficacy spectrum of antishivering medications: meta-analysis of randomized controlled trials. Crit Care Med 2012; 40: 3070-82. https://doi.org/10.1097/CCM.0b013e31825b931e
  18. Bilotta F, Rosa G. Nefopam for severe hiccups. N Engl J Med 2000; 343: 1973-4.
  19. Bilotta F, Pietropaoli P, Rosa G. Nefopam for refractory postoperative hiccups. Anesth Analg 2001; 93: 1358-60. https://doi.org/10.1097/00000539-200111000-00066
  20. Pajot S, Geeraerts T, Leblanc PE, Duranteau J, Benhamou D. Hiccup during weaning from mechanical ventilation: the use of nefopam. Br J Anaesth 2007; 99: 748-9. https://doi.org/10.1093/bja/aem287
  21. Barrot M. Tests and models of nociception and pain in rodents. Neuroscience 2012; 211: 39-50. https://doi.org/10.1016/j.neuroscience.2011.12.041
  22. Jaggi AS, Jain V, Singh N. Animal models of neuropathic pain. Fundam Clin Pharmacol 2011; 25: 1-28.
  23. Hunskaar S, Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 1987; 30: 103-14. https://doi.org/10.1016/0304-3959(87)90088-1
  24. Cho SY, Park AR, Yoon MH, Lee HG, Kim WM, Choi JI. Antinociceptive effect of intrathecal nefopam and interaction with morphine in formalin-induced pain of rats. Korean J Pain 2013; 26: 14-20. https://doi.org/10.3344/kjp.2013.26.1.14
  25. Girard P, Pansart Y, Coppe MC, Gillardin JM. Nefopam reduces thermal hypersensitivity in acute and postoperative pain models in the rat. Pharmacol Res 2001; 44: 541-5. https://doi.org/10.1006/phrs.2001.0886
  26. Buritova J, Besson JM. Effects of nefopam on the spinal nociceptive processes: a c-Fos protein study in the rat. Eur J Pharmacol 2002; 441: 67-74. https://doi.org/10.1016/S0014-2999(02)01418-8
  27. Laboureyras E, Chateauraynaud J, Richebe P, Simonnet G. Long-term pain vulnerability after surgery in rats: prevention by nefopam, an analgesic with antihyperalgesic properties. Anesth Analg 2009; 109: 623-31. https://doi.org/10.1213/ane.0b013e3181aa956b
  28. Evans MS, Lysakowski C, Tramer MR. Nefopam for the prevention of postoperative pain: quantitative systematic review. Br J Anaesth 2008; 101: 610-7. https://doi.org/10.1093/bja/aen267
  29. Tigerstedt I, Tammisto T, Leander P. Comparison of the analgesic dose-effect relationships of nefopam and oxycodone in postoperative pain. Acta Anaesthesiol Scand 1979; 23: 555-60. https://doi.org/10.1111/j.1399-6576.1979.tb01486.x
  30. Dordoni PL, Della Ventura M, Stefanelli A, Iannace E, Paparella P, Rocca B, et al. Effect of ketorolac, ketoprofen and nefopam on platelet function. Anaesthesia 1994; 49: 1046-9. https://doi.org/10.1111/j.1365-2044.1994.tb04352.x
  31. Gasser JC, Bellville JW. Respiratory effects of nefopam. Clin Pharmacol Ther 1975; 18: 175-9. https://doi.org/10.1002/cpt1975182175
  32. Guindon J, Walczak JS, Beaulieu P. Recent advances in the pharmacological management of pain. Drugs 2007; 67: 2121-33. https://doi.org/10.2165/00003495-200767150-00002
  33. Torres GE, Gainetdinov RR, Caron MG. Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 2003; 4: 13-25. https://doi.org/10.1038/nrn1008
  34. Max MB, Gilron IH. Antidepressants, muscle relaxants, and N-methyl-D-aspartate receptor antagonists. In: Bonica's management of pain. 3rd ed. Edited by Loeser JD, Bonica JJ. Philadelphia (PA), Lippincott Williams & Wilkins. 2001, pp 1710-26.
  35. Novelli A, Diaz-Trelles R, Groppetti A, Fernandez-Sanchez MT. Nefopam inhibits calcium influx, cGMP formation, and NMDA receptor-dependent neurotoxicity following activation of voltage sensitive calcium channels. Amino Acids 2005; 28: 183-91. https://doi.org/10.1007/s00726-005-0166-0
  36. Verleye M, Andre N, Heulard I, Gillardin JM. Nefopam blocks voltage-sensitive sodium channels and modulates glutamatergic transmission in rodents. Brain Res 2004; 1013: 249-55. https://doi.org/10.1016/j.brainres.2004.04.035
  37. Biella GE, Groppetti A, Novelli A, Fernandez-Sanchez MT, Manfredi B, Sotgiu ML. Neuronal sensitization and its behavioral correlates in a rat model of neuropathy are prevented by a cyclic analog of orphenadrine. J Neurotrauma 2003; 20: 593-601. https://doi.org/10.1089/089771503767168519
  38. Novelli A, Groppetti A, Rossoni G, Manfredi B, FerreroGutierrez A, Perez-Gomez A, et al. Nefopam is more potent than carbamazepine for neuroprotection against veratridine in vitro and has anticonvulsant properties against both electrical and chemical stimulation. Amino Acids 2007; 32: 323-32. https://doi.org/10.1007/s00726-006-0419-6
  39. Czuczwar M, Czuczwar K, Cieszczyk J, Kis J, Saran T, Luszczki JJ, et al. Nefopam enhances the protective activity of antiepileptics against maximal electroshock-induced convulsions in mice. Pharmacol Rep 2011; 63: 690-6. https://doi.org/10.1016/S1734-1140(11)70580-1
  40. Löscher W, Schmidt D. New Horizons in the development of antiepileptic drugs: innovative strategies. Epilepsy Res 2006; 69: 183-272. https://doi.org/10.1016/j.eplepsyres.2006.03.014
  41. Hoebel BG, Hernandez L, Schwartz DH, Mark GP, Hunter GA. Microdialysis studies of brain norepinephrine, serotonin, and dopamine release during ingestive behavior. Theoretical and clinical implications. Ann N Y Acad Sci 1989; 575: 171-91. https://doi.org/10.1111/j.1749-6632.1989.tb53242.x
  42. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, et al. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev 1994; 46: 157-203.
  43. Fink KB, Göthert M. 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 2007; 59: 360-417. https://doi.org/10.1124/pr.59.07103
  44. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology 1999; 38: 1083-152. https://doi.org/10.1016/S0028-3908(99)00010-6
  45. Bannister K, Bee LA, Dickenson AH. Preclinical and early clinical investigations related to monoaminergic pain modulation. Neurotherapeutics 2009; 6: 703-12. https://doi.org/10.1016/j.nurt.2009.07.009
  46. Cotecchia S, Stanasila L, Diviani D. Protein-protein interactions at the adrenergic receptors. Curr Drug Targets 2012; 13: 15-27. https://doi.org/10.2174/138945012798868489
  47. Girault JA, Greengard P. The neurobiology of dopamine signaling. Arch Neurol 2004; 61: 641-4. https://doi.org/10.1001/archneur.61.5.641
  48. Benzon HT. The neuropathic pain scales. Reg Anesth Pain Med 2005; 30: 417-21. https://doi.org/10.1097/00115550-200509000-00001
  49. Mather GG, Labroo R, Le Guern ME, Lepage F, Gillardin JM, Levy RH. Nefopam enantiomers: preclinical pharmacology/toxicology and pharmacokinetic characteristics in healthy subjects after intravenous administration. Chirality 2000; 12: 153-9. https://doi.org/10.1002/(SICI)1520-636X(2000)12:3<153::AID-CHIR9>3.0.CO;2-V
  50. Durrieu G, Olivier P, Bagheri H, Montastruc JL; French Network of Pharmacovigilance Centers. Overview of adverse reactions to nefopam: an analysis of the French Pharmacovigilance database. Fundam Clin Pharmacol 2007; 21: 555-8. https://doi.org/10.1111/j.1472-8206.2007.00499.x

Cited by

  1. The Potential Role of Intrathecal Nefopam in the Management of Neuropathic Pain vol.27, pp.3, 2014, https://doi.org/10.3344/kjp.2014.27.3.301
  2. Recent Advances in the Development of Pharmacologically Active Compounds that Contain a Benzoxazole Scaffold vol.4, pp.12, 2015, https://doi.org/10.1002/ajoc.201500235
  3. Nefopam Reduces Dysesthesia after Percutaneous Endoscopic Lumbar Discectomy vol.29, pp.1, 2016, https://doi.org/10.3344/kjp.2016.29.1.40
  4. The Effect of Nefopam on Postoperative Fentanyl Consumption: A Randomized, Double-blind Study vol.29, pp.2, 2016, https://doi.org/10.3344/kjp.2016.29.2.110
  5. Use of Nefopam in Perioperative Pain Management; Keeping Nefopam in between vol.29, pp.2, 2016, https://doi.org/10.3344/kjp.2016.29.2.71
  6. Tapentadol: Can It Kill Two Birds with One Stone without Breaking Windows? vol.29, pp.3, 2016, https://doi.org/10.3344/kjp.2016.29.3.153
  7. The Role of Spinal Dopaminergic Transmission in the Analgesic Effect of Nefopam on Rat Inflammatory Pain vol.29, pp.3, 2016, https://doi.org/10.3344/kjp.2016.29.3.164
  8. Comparison of effect of electroacupuncture and nefopam for prevention of postanesthetic shivering in patients undergoing urologic operation under spinal anesthesia vol.69, pp.6, 2016, https://doi.org/10.4097/kjae.2016.69.6.579
  9. Earlier treatment improves the chances of complete relief from postherpetic neuralgia vol.30, pp.3, 2017, https://doi.org/10.3344/kjp.2017.30.3.214
  10. A Review of Adjunctive CNS Medications Used for the Treatment of Post-Surgical Pain vol.31, pp.7, 2017, https://doi.org/10.1007/s40263-017-0440-1
  11. Inadvertent intrathecal injection of nefopam during spinal anaesthesia vol.34, pp.5, 2017, https://doi.org/10.1097/EJA.0000000000000596
  12. Effects of nefopam on emergence agitation after general anesthesia for nasal surgery vol.96, pp.47, 2017, https://doi.org/10.1097/MD.0000000000008843
  13. evaluation pp.2169-141X, 2017, https://doi.org/10.1080/21691401.2017.1301459
  14. Adverse Hemodynamic Effects of Nefopam in Patients Undergoing Plastic and Aesthetic Surgery: A Single-Center Retrospective Study vol.24, pp.1, 2018, https://doi.org/10.14730/aaps.2018.24.1.26
  15. Effects of nefopam on catheter-related bladder discomfort in patients undergoing ureteroscopic litholapaxy vol.71, pp.3, 2018, https://doi.org/10.4097/kja.d.18.27113
  16. For the peace of postanesthesia care unit vol.71, pp.3, 2018, https://doi.org/10.4097/kja.d.18.00113
  17. Nefopam downregulates autophagy and c-Jun N-terminal kinase activity in the regulation of neuropathic pain development following spinal nerve ligation vol.18, pp.1, 2018, https://doi.org/10.1186/s12871-018-0559-8
  18. Status Epilepticus Caused by Nefopam vol.56, pp.5, 2014, https://doi.org/10.3340/jkns.2014.56.5.448
  19. Le traitement antalgique des douleurs cancéreuses vol.64, pp.210, 2014, https://doi.org/10.1016/j.revinf.2015.01.005
  20. Nefopam analgesia and its role in multimodal analgesia: A review of preclinical and clinical studies vol.43, pp.1, 2014, https://doi.org/10.1111/1440-1681.12506
  21. Preventive Analgesic Efficacy of Nefopam in Acute and Chronic Pain After Breast Cancer Surgery : A Prospective, Double-Blind, and Randomized Trial vol.95, pp.20, 2014, https://doi.org/10.1097/md.0000000000003705
  22. Combination of nefopam and remifentanil is more effective to reduce rocuronium-induced withdrawal response compared with remifentanil alone: a prospective, double-blinded, randomized control study vol.13, pp.1, 2018, https://doi.org/10.17085/apm.2018.13.1.53
  23. Nefopam does not influence onset and recovery profiles of rocuronium-induced neuromuscular block: a prospective, double-blinded, randomized, controlled study vol.13, pp.3, 2014, https://doi.org/10.17085/apm.2018.13.3.286
  24. The efficacy and safety of first-line therapies for preventing chronic post-surgical pain: a network meta-analysis vol.9, pp.62, 2018, https://doi.org/10.18632/oncotarget.22611
  25. Effects on postoperative nausea and vomiting of nefopam versus fentanyl following bimaxillary orthognathic surgery: a prospective double-blind randomized controlled trial vol.19, pp.1, 2014, https://doi.org/10.17245/jdapm.2019.19.1.55
  26. Analgesic Effect of Low Dose Nefopam Hydrochloride after Arthroscopic Rotator Cuff Repair: A Randomized Controlled Trial vol.8, pp.4, 2014, https://doi.org/10.3390/jcm8040553
  27. Rapidly fatal neurological and cardiocirculatory failure in a patient recently treated with nefopam vol.85, pp.5, 2014, https://doi.org/10.23736/s0375-9393.18.13395-5
  28. Nefopam: Another Pragmatic Analgesic in Managing Chronic Neuropathic Pain vol.25, pp.3, 2014, https://doi.org/10.4103/ijpc.ijpc_215_18
  29. Analgesic efficacy of nefopam for cancer pain: a randomized controlled study vol.9, pp.None, 2014, https://doi.org/10.12688/f1000research.23455.1
  30. Emergence agitation: current knowledge and unresolved questions vol.73, pp.6, 2014, https://doi.org/10.4097/kja.20097
  31. The effect of using nefopam in fentanyl-based intravenous patient-controlled analgesia on the incidence of postoperative nausea and vomiting in laparoscopic gynecological surgery vol.4, pp.1, 2014, https://doi.org/10.30579/mbse.2021.4.1.20
  32. Effect of Nefopam-Based Patient-Controlled Analgesia with and without Fentanyl on Postoperative Pain Intensity in Patients Following Laparoscopic Cholecystectomy: A Prospective, Randomized, Controlled vol.57, pp.4, 2014, https://doi.org/10.3390/medicina57040316