DOI QR코드

DOI QR Code

막반응기에서의 수성가스전이반응의 성능 분석

Performance Analysis of Water Gas Shift Reaction in a Membrane Reactor

  • 임한권 (대구가톨릭대학교 화학시스템공학과)
  • Lim, Hankwon (Department of Chemical Systematic Engineering, Catholic University of Daegu)
  • 투고 : 2014.02.07
  • 심사 : 2014.02.26
  • 발행 : 2014.04.10

초록

본 연구는 1차원 반응기 모델을 이용한 수치 시뮬레이션을 통해 수소투과량, 수소선택도, 사용된 촉매의 양, 급송흐름에서의 $H_2O/CO$ 조성비 및 Ar sweep gas가 막반응기(membrane reactor)에서의 수성가스전이반응의 성능에 미치는 영향을 분석하였다. 막반응기에서 평형상태보다 향상된 수소수율을 얻기 위해선 적어도 100 이상의 수소선택도를 가져야 함이 관찰되었으며, 수소투과량이 계속 증가될 경우에는 수소수율의 증가폭이 점차 감소됨이 보였다. 낮은 수소투과량의 경우에는 촉매량이 증가할수록 초기엔 증가된 CO 전환율을 보이다가 점차 그 증가폭이 감소되었으며, 높은 수소투과량의 경우에는 촉매의 양과 무관하게 높은 CO 전환율이 관찰되었다. 급송흐름에서의 $H_2O/CO$ 조성비가 1.5 이상인 경우엔 수소투과량이 막반응기에서의 CO 전환율에 미치는 영향이 미미하였고, 막반응기에서 평형상태보다 향상된 CO 전환율을 얻기 위해선 적어도 $6.7{\times}10^{-6}mol\;s^{-1}$ 의 Ar 몰유속이 필요함이 밝혀졌다.

This study investigated the effect of hydrogen permeance and selectivity, catalyst amount, $H_2O/CO$ ratio in a feed stream, and Ar sweep gas on the performance of a water gas shift reaction in a membrane reactor. It was observed that a minimum hydrogen selectivity of 100 was needed in a membrane reactor to obtain a hydrogen yield higher than the one at equilibrium and the hydrogen yield enhancement gradually decreased as the hydrogen permeance increased. The CO conversion in a membrane reactor initially increased with the catalyst amount and reached a plateau later for a membrane reactor with a low hydrogen permeance while the high CO conversion independent of a catalyst amount was observed for a membrane reactor with a high hydrogen permeance. For the $H_2O/CO$ ratio in a feed stream higher than 1.5, a hydrogen permeance had little effect on the CO conversion in a membrane reactor and it was found that a minimum Ar molar flow rate of $6.7{\times}10^{-6}mol\;s^{-1}$ was needed to achieve the CO conversion higher than the one at equilibrium in a membrane reactor.

키워드

참고문헌

  1. J. G. Sanchez Marcano and T. T. Tsotsis, Catalytic Membranes and Membrane Reactors, 1st ed., 5, WILEY-VCH, Weinheim (2002).
  2. D. Lee, P. Hacarlioglu, and S. T. Oyama, The effect of pressure in membrane reactors: trade-off in permeability and equilibrium conversion in the catalytic reforming of $CH_4$ with $CO_2$ at high pressure, Top. Catal., 29, 45-57 (2004). https://doi.org/10.1023/B:TOCA.0000024927.26174.9b
  3. S. Irusta, J. Munera, C. Carrara, E. A. Lombardo, and L. M. Cornaglia, A stable, novel catalyst improves hydrogen production in a membrane reactor, Appl. Catal. A: Gen., 287, 147-158 (2005). https://doi.org/10.1016/j.apcata.2005.03.018
  4. T. Tsuru, K. Yamaguchi, T. Yoshioka, and M. Asaeda, Methane steam reforming by microporous catalytic membrane reactors, AICHE J., 50, 2794-2805 (2004). https://doi.org/10.1002/aic.10215
  5. J. Tong and Y. Matsumura, Effect of catalytic activity on methane steam reforming in hydrogen-permeable membrane reactor, Appl. Catal. A: Gen., 286, 226-231 (2005). https://doi.org/10.1016/j.apcata.2005.03.013
  6. P. Hacarlioglu, Y. Gu, and S.T. Oyama, Studies of the methane steam reforming reaction at high pressure in a ceramic membrane reactor, J. Nat. Gas Chem., 15, 73-81 (2006). https://doi.org/10.1016/S1003-9953(06)60011-X
  7. E. Kikuchi, S. Kawabe, and M.Matsukata, Steam reforming of methanol on $Ni/Al_2O_3$ catalyst in a Pd-membrane reactor, J. Jpn. Pet. Inst., 46, 93-98 (2003). https://doi.org/10.1627/jpi.46.93
  8. A. Basile, F. Gallucci, and L. Paturzo, A dense Pd/Ag membrane reactor for methanol steam reforming: experimental study, Catal. Today, 104, 244-250 (2005). https://doi.org/10.1016/j.cattod.2005.03.066
  9. D. W. Lee, S. E. Nam, B. Sea, S. K. Ihm, and K. H. Lee, Preparation of Pt-loaded hydrogen selective membranes for methanol reforming, Catal. Today, 118, 198-204 (2006). https://doi.org/10.1016/j.cattod.2005.12.005
  10. S. Tosti, A. Basile, F. Borgognoni, V. Capaldo, S. Cordiner, S. Di Cave, F. Gallucci, C. Rizzello, A. Santucci, and E. Traversa, Low temperature ethanol steam reforming in a Pd-Ag membrane reactor: Part 1: Ru-based catalyst, J. Membr. Sci., 308, 250-257 (2008). https://doi.org/10.1016/j.memsci.2007.10.001
  11. C. Y. Yu, D. W. Lee, S. J. Park, K. Y. Lee, and K. H. Lee, Ethanol steam reforming in a membrane reactor with Pt-impregnated Knudsen membranes, Appl. Catal. B., 86, 121-126 (2009). https://doi.org/10.1016/j.apcatb.2008.08.006
  12. H. Lim, Y. Gu, and S.T. Oyama, Reaction of primary and secondary products in a membrane reactor: studies of ethanol steam reforming with a silica-alumina composite membrane, J. Membr. Sci., 351, 149-159 (2010). https://doi.org/10.1016/j.memsci.2010.01.042
  13. S. Tosti, A. Basile, G. Chiappetta, C. Rizzello, V. Violante, Pd-Ag membrane reactors for water gas shift reaction, Chem. Eng. J., 93, 23-30 (2003). https://doi.org/10.1016/S1385-8947(02)00113-4
  14. J. Catalano, F. Guazzone, I. P. Mardilovich, N. K. Kazantzis, and Y. H. Ma, Hydrogen production in a large scale water-gas shift Pd-based catalytic membrane reactor, Ind. Eng. Chem. Res., 52 (3), 1042-1055 (2013). https://doi.org/10.1021/ie2025008
  15. A. Basile, G. Chiappetta, S. Tosti, and V. Violante, Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor, Sep. Purif. Technol., 25, 549-571 (2001). https://doi.org/10.1016/S1383-5866(01)00168-X
  16. S. T. Oyama, H. Lim, An operability level coefficient (OLC) as a useful tool for correlating the performance of membrane reactors, Chem. Eng. J., 151, 351-358 (2009). https://doi.org/10.1016/j.cej.2009.04.017
  17. B. R. J. Smith, M. Loganathan, M. S. Shantha, A review of the water gas shift reaction kinetics, Int. J. Chem. React. Eng., 8, 1-32 (2010).
  18. A. A. Phatak, N. Koryabkina, S. Rai, J. L. Ratts, W. Ruettinger, R. J. Farrauto, G. E. Blau, W. N. Delgass, and F. H. Ribeiro, Kinetics of the water-gas shift reaction on Pt catalysts supported on alumina and ceria, Catal. Today, 123, 224-234 (2007). https://doi.org/10.1016/j.cattod.2007.02.031
  19. D. Driscoll, B. Morreale, and L. Headley, NETL Test Protocol-Testing of Hydrogen Separation Membranes DOE/NETL-2008/1335, U.S. Department of Energy, Morgantown (2008).
  20. E. Kikuchi, Membrane reactor application to hydrogen production, Catal. Today, 56, 97-101 (2000). https://doi.org/10.1016/S0920-5861(99)00256-4