

J Inf Process Syst, Vol.10, No.1, pp.36~54, March 2014
http://dx.doi.org/10.3745/JIPS.2014.10.1.036

36

A Token Based Protocol for Mutual Exclusion in
Mobile Ad Hoc Networks

Bharti Sharma*, Ravinder Singh Bhatia**, and Awadhesh Kumar Singh**

Abstract—Resource sharing is a major advantage of distributed computing. However,
a distributed computing system may have some physical or virtual resource that may
be accessible by a single process at a time. The mutual exclusion issue is to ensure
that no more than one process at a time is allowed to access some shared resource.
The article proposes a token-based mutual exclusion algorithm for the clustered mobile
ad hoc networks (MANETs). The mechanism that is adapted to handle token passing at
the inter-cluster level is different from that at the intra-cluster level. It makes our
algorithm message efficient and thus suitable for MANETs. In the interest of efficiency,
we implemented a centralized token passing scheme at the intra-cluster level. The
centralized schemes are inherently failure prone. Thus, we have presented an intra-
cluster token passing scheme that is able to tolerate a failure. In order to enhance
reliability, we applied a distributed token circulation scheme at the inter-cluster level.
More importantly, the message complexity of the proposed algorithm is independent of
N, which is the total number of nodes in the system. Also, under a heavy load, it turns
out to be inversely proportional to n, which is the (average) number of nodes per each
cluster. We substantiated our claim with the correctness proof, complexity analysis, and
simulation results. In the end, we present a simple approach to make our protocol fault
tolerant.

Keywords—MANET, Inter-Cluster, Intra-Cluster, Mutual Exclusion, Token Ring

1. INTRODUCTION
Mutual exclusion is a classic coordination problem in distributed computing systems. The

purpose of mutual exclusion protocols is to guarantee exclusive access to the critical resource.
The code segment that is executed to access the shared resource is called the critical section
(CS). The processes that compete for the shared resource cycle through the entry, critical section,
exit, and remainder states. Fundamentally, designing the protocol for mutual exclusion is to
design entry and exit protocols. It is one of the most highly researched problems in the
computing community. Thus, a number of protocols that apply various approaches have been
proposed in the literature on distributed computing. A survey of mutual exclusion protocols for
static distributed systems is given in [1, 2]. However, the last two decades have witnessed
tremendous development in the communication technology that resulted in the emergence of
various types of networks (e.g., static distributed networks, cellular mobile networks, mobile ad
hoc networks, and sensor networks). The change in networking technology has greatly altered
the means of carrying out distributed computing. Unfortunately, the protocols developed for one

Manuscript received February 3, 2013; accepted January 28, 2014.
Corresponding Author: Awadhesh Kumar Singh (aksinreck@rediffmail.com)
* DIMT Kurukshetra, Haryana, INDIA (bharti_kanhiya@yahoo.co.in)
** NIT Kurukshetra, Haryana, INDIA (rsibhatia@yahoo.co.in, aksinreck@rediffmail.com)

Copyright ⓒ 2014 KIPS

pISSN 1976-913X
eISSN 2092-805X

Bharti Sharma, Ravinder Singh Bhatia, and Awadhesh Kumar Singh

37

type of network either fail completely or fail to work with matching performance in other types
of networks. Thus, every change in the networking technology virtually triggers computer
scientists to develop new protocols for the new environment. A two-tier principle for adapting
protocols for mutual exclusion in cellular mobile networks is given in [3] and a method to
restructure distributed algorithms, for the mobile computing environment, is presented in [4].
The use of logical structures is another popular approach to design message efficient distributed
algorithms for dynamic networks. Recently, many mutual exclusion algorithms have been
proposed that use logical structures, like the grid structure in [5], the two-dimensional array
structure in [6, 7], and the hypercube structure in [8].

The ad hoc networks are installed for special purposes on a temporary basis. However, the
constituting component nodes have various limitations (e.g., constrained battery power, a small
amount of storage space, and limited computing capability) and thus, are susceptible to failures.
Nevertheless, the ad hoc networks are easy to set up and can operate without any pre-existing
infrastructure. Unlike cellular networks, they do not possess a base station and each host acts as
a router, too. They try to provide connectivity beyond the range of fixed and cellular
infrastructures. The mobile ad hoc networks (MANETs) use a wireless communication link
between the nodes and have a three-dimensional movement of network nodes. Hence, we
usually do not make assumptions about the patterns of movement in MANETs. There are many
well-understood MANET algorithms. An overview of mutual exclusion protocols for MANETs
is given in [9, 10]. The vehicular ad hoc network (VANET) [11] is a variant of MANET, where
each vehicle is a wireless network enabled node. Although, to handle mutual exclusion, the
VANET may use the existing MANET algorithms, we can enhance their performance by
creating logical structures, (e.g., clusters) if we keep the restricted traffic movement pattern in
mind when creating such structures. Hence, VANETs may use a cluster based MANET
algorithm for various applications. For instance, it can be used in a scenario like war or rescue,
where a group of military vehicles or people follows a synchronous movement (i.e., all nodes
move in the same direction, move together to a new strategic area, or move along a highway).
Thus, the relative position of nodes does not change despite a change in their absolute physical
location. Hence, it is possible to predict that the nodes that are likely to remain together.
Moreover, the life of communication links is also predictable by using the information about the
position, speed, and direction of the movement of the nodes. Therefore, it is possible to create
clustering algorithms based on traffic movement components, where the clustering structure
would remain unperturbed for sufficiently longer durations. The clustering algorithms group the
nodes into clusters to reduce communication overhead. One node from each cluster acts as the
cluster head. All inter-cluster communication relays through the cluster head. The following Fig.
1 represents the schematic view of an assumed VANET environment. The dotted lines represent
the wireless links that connect the cluster heads that form a virtual dynamic ring, which is
computed on the fly.

In the literature on distributed computing, many algorithms exist for clustering and head
selection. The network infrastructure is assumed to be fairly stable for a long time period.
However, the movement of an individual cluster is unpredictable to a large extent because the
clusters move autonomously in order to execute their specific assigned task. However, each
cluster is assigned an individual task that is decided jointly by all the cluster heads, as dictated
by the situation. The clusters share the critical resources that may be needed from time to time.
Some of them are to be accessed in a mutually exclusive way.

A Token Based Protocol for Mutual Exclusion in Mobile Ad Hoc Networks

38

Fig. 1. The Schematic View of VANET

The paper presents a token-based mutual exclusion algorithm that has been designed by

keeping the controlled node movement, which is an inherent requirement of the ad hoc network,
in mind. The token circulation schemes have a long latency and the token asking schemes need a
coordinator. We intended to design a protocol that retains the advantages of both worlds without
suffering too much from the above limitations. Hence, we used different schemes at the inter-
cluster level and at the intra-cluster level. Consequently, our protocol is asymmetric.
Nevertheless, it is message efficient and thus suitable for MANETs. The message complexity is
independent of N, which is the total number of nodes in the system, and under a heavy load, it is
inversely proportional to n, which is the (average) number of nodes per each cluster. Although
the performance has been evaluated for fault-free setting, the method to provide fault tolerance
is explained in detail, in Section 8.

2. THE SYSTEM MODEL
The system is constituted of mobile nodes that are arranged in clusters. Each node is assigned

a unique id. Each cluster has a cluster head. All cluster heads know each other. Each node is
assumed to remain in the communication range of its current cluster head, though it may move
to some other cluster using a handoff procedure. A cluster head is not always in the
communication range of all the remaining cluster heads. Thus, the neighbor set of a cluster head
is dynamic. However, it is not empty. The cluster heads pass messages in the ring that is
dynamic and computed on the fly. The algorithm uses a special message, which is called a
“token,” to support mutual exclusion. The token holder cluster has the privilege to use the
critical resource. Once the token holder cluster is served, its cluster head passes the token to a
neighboring cluster that is yet not served in the current round. The token receiving cluster head
is called the successor of the token releasing cluster head. The successor does the identical
action as its predecessor. In this way, a dynamic ring of cluster heads is formed. Any cluster
member node may crash and the token may be lost. However, the crashing of the cluster head
would require “reclustering,” which is a problem beyond the scope of our paper. Due to node

Cluster Head Mobile Node Inter-Cluster Communication Link

Bharti Sharma, Ravinder Singh Bhatia, and Awadhesh Kumar Singh

39

mobility and node failure, the composition of clusters may undergo significant changes over
time and it may also trigger the need for reclustering to occur. For instance, in military
applications, a strategic unit (e.g., company, battalion, or brigade) may be constituted of various
types of vehicles that can be modeled as mobile nodes. These strategic units can be modeled as
clusters and their respective commanders as cluster heads. Although the vehicles of a particular
strategic unit may not always (or, may not always need to) be in the communication range of
each other, they always remain connected with their commander, in order to ensure strategic
control and coordination. Similarly, a commander may not remain permanently connected with
its other counterparts due to its autonomous and strategic movement.

3. THE ALGORITHM CONCEPT
The protocol supports mutual exclusion in clustered MANETs. It is token based and fault

tolerant. Thus, it ensures exclusive access to shared resource even in the event of node and token
failure. It uses the following two types of tokens: a unique global token, which circulates among
the cluster heads, and a number of local tokens. The number of surviving local tokens is equal to
the number of clusters in the system. Hence, each cluster has one local token, which is private to
that cluster. The proposed algorithm uses both token circulation and token asking schemes.

The ad hoc networks execute the applications that have heavy contention for critical resources.
Thus, each cluster always has some outstanding request. Hence, in general, the cluster heads
remain hungry for a global token. It is well established that the token ring is very efficient under
heavy contention. However, it is inefficient under light contention. Hence, we used the token
circulation scheme among the cluster heads that are arranged in a dynamic ring, which is
computed on the fly. Moreover, the token asking schemes incur a delay when used in some
types of logical structures.

However, it is unlikely that all of the nodes of a cluster have an outstanding request.
Therefore, we use the token asking scheme within the nodes of a cluster. As a result, our
protocol has the following two components: the inter-cluster component and the intra-cluster
component. The former is executed at the cluster heads and the latter is executed at the nodes of
each cluster. In the existing literature on distributed computing, reference [12, 13] used
clustering in their token based mutual exclusion algorithm for static distributed systems. Baldoni
et al. [14], proposed a token-based algorithm for mutual exclusion in MANETs. The algorithm
passes a token over the logical ring, which is dynamically created. For each round of token
circulation there is a coordinator. The initial token holder node becomes the coordinator for the
first round. The token circulation is initiated when a node becomes hungry for the token and
sends a token request to the coordinator. The token is circulated in the entire ring, even if no
other node is hungry and thus, the scheme incurs a large overhead [15]. The role of the
coordinator is transferred to next node in the dynamic ring at the beginning of each round. The
ID of the next coordinator is sent with the token in each round. Hence, the hungry nodes can
pass their token requests directly to the coordinator. When a node is served, it passes the token
to the next nearest node that has not been visited by the token. In this way, the algorithm ensures
starvation freedom.

Unlike [12, 13, 14], our protocol does not have any ring coordinator. Despite having some
advantages, the existence of a coordinator injects a centralized character into the protocol, which

A Token Based Protocol for Mutual Exclusion in Mobile Ad Hoc Networks

40

results in reduced reliability. Although, as mentioned in the above three papers, the protocols
rotate the coordinator and each change in coordinator results in the flow of a large number of
messages to inform all the nodes about the new coordinator. Moreover, in MANETs, the
communication links are volatile. Thus, the centralized coordination can’t work effectively in
the assumed environment. Hence, no cluster head has been elected or nominated as the ring
coordinator. We have used a fully distributed approach to pass the global token among cluster
heads. However, our clusters are assumed more reliable with robust cluster heads and, thus, in
order to have better message efficiency, we have applied a centralized protocol to pass the local
token within the nodes of a cluster. Nevertheless, in order to compensate for the loss of
reliability, which is due to use of the centralized scheme, this scheme has been made fault
tolerant. Next, we will discuss how both of the components work.

3.1 The Inter-Cluster Component

Each cluster head is aware of all of the other cluster heads. The cluster heads are assumed to
be in a dynamic ring that is computed on the fly. In order to circulate the global token, the
cluster heads that are not visited by it, are assumed to be hungry for token. The global token
holder cluster head, after satisfying the pending token requests in its own cluster, forwards the
global token to a token hungry neighbor (a.k.a. successor) cluster head. However, if there is no
hungry neighbor cluster head, then it forwards the global token to a non-hungry neighbor cluster
head that does not use the global token, and instead, it tries to find a hungry successor cluster
head. In this way, all clusters are eventually served. When the global token holder observes that
each cluster head has received the global token once in the current round, the current global
token holder starts a new round of global token circulation. For this purpose, it resets (similar to
initialization) the information contained in the global token, as if no cluster head has received
the global token yet.

3.2 The Intra-Cluster Component

The cluster head of each cluster acts as a coordinator for the cluster. Each hungry node of a
cluster sends a request for the local token to its cluster head, in order to enter the CS. The cluster
head collects the requests sent by the hungry nodes and serves them with the help of the local
token, as and when it receives the global token. When the requests, which are received before
the reception of the global token, get served, the global token is forwarded to the successor
cluster head in the dynamic ring. This scheme is used to avoid the starvation in token hungry
clusters. In case, prior to receiving the global token, a cluster head could not receive any token
request from its cluster members, it forwards the global token to the successor cluster head.
However, after the reception of a global token at the cluster head, the token requests received at
the cluster head are kept as pending until the global token is received by the cluster head in the
next round.

4. DATA STRUCTURES, TYPES OF MESSAGES, AND PROCESS BEHAVIOR
The protocol uses the data structures and types of messages as listed below.

Bharti Sharma, Ravinder Singh Bhatia, and Awadhesh Kumar Singh

41

4.1 At the Intra-Cluster Component

4.1.1 The Data Structures that are maintained at each Cluster Node

1. try: A Boolean variable, which is set to true, when the node wants to enter the CS
2. In: A Boolean variable, which is set to true, when node is in the CS
3. co: Identifier of a cluster head
4. seqno: This is the round number of a local token that is known to the cluster node
5. type: This is a variable that may assume any of the following values depending upon the

type of message that is to be sent by cluster node to cluster head:
(a) req: Request made to the cluster head when the node is hungry for the token
(b) over: To inform the cluster head that the node has executed the CS.
(c) over&out: To return the local token back to cluster head when there is no pending request

entry in the local token.
6. tokenholder: This is the Boolean variable, which becomes true, after receiving a local token
7. tokenvalue: This is an integer, which is initially 0, that stores the number of local tokens at

cluster node i
8. neighbori: This is the set of nodes that is currently in the communication range of cluster

node i

4.1.2 Messages

A node communicates with other node within a cluster via the types of messages listed below.
1. localtokenmsg<localtoken, roundno>: This has two fields. The first is a queue of all of the

requesting nodes of the cluster, and the second is the round number of the localtokenmsg
that indicates how many rounds it has completed in the cluster. It is initialized to zero. The
localtokenmsg is used to grant the privilege to execute the CS. Initially, the cluster head
sends localtokenmsg to the requesting node that is entered at index zero in localtoken. The
node receiving localtokenmsg, after executing the CS, deletes its entry from the localtoken
and forwards localtokenmsg to the next hungry node by looking the entry in localtoken.
When there is no entry left unserved in the localtoken, the site, which last executed the CS,
then returns it to the cluster head.

2. msg_to_ch: <Id, type, co> The nodes of the cluster use this to send various types of
messages to their cluster heads. It has three variables. The first field is the identifier of the
sender node, the second one is a type of message, and third one has the ID of the cluster
head.

4.1.3 The Behavior of a Process at Cluster Node

Each hungry node sends a token request to its cluster head. After receiving the localtokenmsg
from its cluster head, the hungry node compares its local seqno with the global roundno that is
available in the received localtokenmsg. If the local seqno is less than the global roundno, the
node enters in the CS. After executing the CS, the node sets its local seqno to be equal to the
global roundno that is available in the localtokenmsg. Furthermore, the node sends the over
message to its cluster head and forwards the localtokenmsg to the next hungry node that has an
outstanding request in the localtokenmsg. However, if the next hungry node is not in its
communication range, the node returns the localtokenmsg back to its cluster head, which

A Token Based Protocol for Mutual Exclusion in Mobile Ad Hoc Networks

42

forwards the localtokenmsg to the next hungry node that has an outstanding request in the
localtokenmsg. Nevertheless, if the localtokenmsg has no unserved request, the node sends an
over&out message to its cluster head and returns the localtokenmsg back to its cluster head.
Listed below are the events and the actions taken on the occurrence of those events.

A. Cluster node i is hungry for token:

1. try ← True;
2. Send msg_to_ch<i, req, co> to the cluster head
3. Wait for the localtokenmsg;

B. On receiving localtokenmsg by cluster node i:

4. increment tokenvalue; tokenholder ← True;

Case 1: Single localtokenmsg is at a cluster node i

5. IF tokenvalue == 1 THEN
6. IF seqno < localtokenmsg.roundno THEN
7. In ← True; /* in critical section */
8. Execute STEPS 15-24;
9. ELSE execute STEPS 17-24;

Case 2: Two or more localtokenmsg are at a cluster node i

10. IF (tokenvalue ≥ 2) THEN
11. Keep the localtokenmsg with maximal localtokenmsg.roundno; consume all

other localtokenmsg;
12. tokenvalue ← 1;
13. IF seqno ≥ localtokenmsg.roundno THEN execute STEPS 17-24;
14. ELSE execute STEPS 7-8;

C. On Exit CS by cluster node i:

15. In ← false;
16. seqno ← localtokenmsg.roundno;
17. dequeue node i from localtoken[];
18. IF localtoken[] == ∅ THEN
19. Send the over&out message to the cluster head;
20. Send the localtokenmsg to the cluster head; decrement tokenvalue; token
 holder ← False;

ELSE
21. Send an over message to the cluster head;
22. IF localtoken[head] ∉ neighbori THEN
23. execute STEP 20;

Bharti Sharma, Ravinder Singh Bhatia, and Awadhesh Kumar Singh

43

24. ELSE send localtokenmsg to the localtoken[head]; decrement tokenvalue;
 tokenholder ← False;

4.2 At Inter-Cluster Component

4.2.1 The Data Structures that are maintained at each Cluster Head

1. co: This is the ID of the cluster head.
2. globalno: This is the round number of global token that is known to the cluster head.
3. LQ: This is queue of the token requests that are received at cluster head before the cluster

head receives the global token. LQ is used to generate the local token. After receiving the
global token, LQ is copied into the localtokenmsg by the cluster head before forwarding the
localtokenmsg to the requesting node, which is entered at index zero.

4. N-LISTi: This is the list of cluster heads that are the current neighbors of cluster head i.
Initially, it is empty.

5. holdi: This is a Boolean variable whose value is initially false, and then set to true when
cluster head i receives the global token.

6. hungry: This is a Boolean variable that is set to true when some node within the cluster is
hungry.

7. globaltoken < globalvalue, color[0…N-1]>: This contains the following two fields: an
integer globalvalue, which is initialized to 0 and incremented in the beginning of each new
circulation of a global token; and an array color[] that stores the status of all cluster heads.
In the globaltoken.color[0…N-1] the entries are made as listed below.
a. W: Signifies that the corresponding cluster head is yet to receive a globaltoken.
b. R: Signifies that the corresponding cluster head has received the globaltoken and that it

has used it to serve the token requests from its cluster.
8. NLQ: This is the queue of the token requests, which were received at the cluster head after

the cluster head had received the globaltoken.

4.2.2 The Behavior of a Process at Cluster Head

Initially, one cluster head will arbitrarily become the holder of the globaltoken. If it has some
outstanding token request(s) from its cluster, then it will use the globaltoken to generate a
localtokenmsg in order to serve such requests. After serving its cluster, the cluster head makes
its entry to a globaltoken as having “visited” and forwards the globaltoken to next reachable
(a.k.a. successor) cluster head, whose entry in the globaltoken is labeled as “not visited.” Here,
the cluster head ID is used to do a tie break in case multiple cluster heads are reachable. The
new recipient of the globaltoken also uses it in the identical manner. However, if all of the
entries in the globaltoken have been “visited,” the current globaltoken holder cluster head resets
them to being “not visited” and starts a new round of token circulation. The token requests sent
by the hungry sites are stored at the corresponding cluster head site by entering the requester ID
in the local request queue. In a particular round, a cluster head only serves those token requests
that were received at the cluster head before the cluster head could receive the globaltoken in
that round. The remaining token requests, which were received at the cluster head after the
cluster head received the globaltoken in that round, are kept as pending for the next round. This

A Token Based Protocol for Mutual Exclusion in Mobile Ad Hoc Networks

44

mechanism ensures that the other clusters do not starve for the token. On the occurrence of
various events, the cluster head takes the actions listed below.

A. On receiving msg_to_ch from cluster node j to cluster head i:

msg_to_ch.type == req
 IF globaltoken is not yet received THEN
 enter j in LQ;
 ELSE enter j in NLQ;

B. On receiving globaltoken at cluster head i:

IF globaltoken.color[i] == R THEN forward globaltoken to successor clus
 ter head like Case 3 below;
ELSE
hold ← True;
globaltoken.color[i] ← R;
IF hungry == False THEN

forward the globaltoken to a successor cluster head j such that
j≠i, color[j]=w, j∈N-LISTi;

ELSE
globalno ← globaltoken.globalvalue;
generate localtokenmsg; increment localtokenmsg.roundno;
send localtokenmsg to localtoken[head]; wait for message;

Case 1: IF the message received from the cluster node is over THEN
 Update LQ;
 ELSE wait for a timeout to receive the over or over&out message;

Case 2: IF timeout == true for the over or over&out message THEN
 generate a new localtokenmsg with the same roundno as it was in the

lost localtokenmsg;
send the new localtokenmsg to localtoken[head];

Case 3: IF localtoken[] == ∅ OR received over&out THEN hold ← False;
 //forward globaltoken to successor cluster head//
 begin
 IF j≠i ∧ globaltoken.color[j] == W THEN
 begin
 IF j ∈ N-LISTi THEN send the globaltoken to j
 ELSE send the globaltoken to some cluster head k such that

globaltoken. color[k] == R ∧ k ∈ N-LISTi
 end
 ELSE //start a new circulation round of globaltoken//
 increment globaltoken.globalvalue; ∀j globaltoken.color[j] ← W;

Bharti Sharma, Ravinder Singh Bhatia, and Awadhesh Kumar Singh

45

 forward the globaltoken to a successor cluster head j such that
 j≠i, j∈N-LISTi;
 end

IF NLQ is empty THEN hungry ← False ELSE hungry ← True;

5. THE CORRECTNESS PROOF
In this section, we show that the algorithm achieves mutual exclusion and it is free from

deadlock and starvation.

5.1 Mutual Exclusion

The proof of mutual exclusion is trivial in token-based protocols. However, in our protocol,
there is the provision of more than one type of token, namely the global token and local token.
Hence, in order to show that it ensures mutual exclusion, we need to prove that one site, at most,
holds the privilege to execute the CS. In our protocol, only the local token message is used to
grant privilege to execute the CS. Moreover, a cluster head generates the local token message
only after receiving the global token and the local token remains in circulation within its cluster
until the cluster head holds the global token. In addition, the global token is the only token that
is used to pass privilege to a cluster head to generate the local token message. Initially, only one
cluster head holds the global token, say site S. There are three situations where site S sends the
global token to another cluster head: (1) all of the hungry sites, within the cluster of site S that
have requested for token before the receipt of global token, have finished the execution of the
CS and the site that executed the CS last, has returned the local token back to site S; (2) no site,
within the cluster of site S, was hungry before the receipt of a global token; or (3) site S has
already received the global token once in the current round and therefore, it is prohibited to
generate the local token message again in the current round. In either of these cases, site S sends
the global token to only one of the reachable cluster heads that is yet to receive the global token
in the current round. The new holder of the global token also uses it in the manner explained
above, before sending it out. Therefore, one site at most holds the privilege to execute the CS.

5.2 Starvation Freedom

The starvation occurs when few sites repeatedly execute the CS, while other sites wait
indefinitely for their turn to do so. In our algorithm, there is single global token that passes
privilege among the cluster heads to ensure inter-cluster mutual exclusion. The only cluster head
that is currently holding the global token can use its local token to serve the hungry nodes of its
cluster. At each cluster head, the local token queue (LTQ) is a FCFS (First-Come-First-Serve)
queue, which is used to contain the requests that have been received at the cluster head, before
the cluster head itself receives the global token. The local token is passed around according to
the order of requests in the LTQ. If site Y, whose request is in front of site X’s request in the
LTQ, has finished its execution of the CS, site Y’s subsequent request will never be added to the
current LTQ. Thus, no site will be executing CS repeatedly in the current LTQ round. Any site
Y, whose request is in front of site X’s request in the LTQ, will be able to make a subsequent
token request and, therefore, will only get the local token again in the next LTQ round.

A Token Based Protocol for Mutual Exclusion in Mobile Ad Hoc Networks

46

Moreover, the number of hungry nodes within the cluster is finite and so the length of the LTQ
is also finite. Hence, site X will eventually get the local token. Once the current LTQ is served,
the cluster head is bound to release the global token. Therefore, no cluster head will be holding
the global token indefinitely. The system model assumes that the neighbor set of a cluster head
is never empty. Consequently, when a cluster head releases the global token, an “unvisited”
cluster head will eventually receive it. Since, the number of cluster heads is finite; every cluster
head will eventually receive the privilege to use the critical resource. Hence, no cluster will be
starving for the CS. Therefore, the algorithm is free from starvation.

6. THE COMPLEXITY ANALYSIS

6.1 Message Complexity

Assume there are n nodes in each cluster and that there are m cluster heads. However, each
cluster may not have the same number of nodes. In that case, n is the average number of nodes
per each cluster. The cluster heads has been identified as m0, m1, .. , mm-1. The global token is
assumed to traverse clockwise in the dynamic ring, which is computed on the fly. We will now
analyze the performance of the protocol under both heavy and light load conditions.

(i) Heavily Loaded System
Under the heavy load condition, every node in all of the clusters is assumed to be hungry.

Therefore, the total number of requesting nodes will be m×n, which will generate m×n request
messages. In order to serve these requests, the total number of global token messages generated
will be m and the total number of local token messages generated will be m×n. Therefore, the
total number of all types of messages will amount to (m×n) + m + (m×n). Hence, the number of
messages required to fulfill one request will be equal to {2(m×n)+m}/(m×n) that is (2+1/n).
Consequently, the message complexity under heavy load conditions would be O(1/n). It is
obvious that the message complexity is independent of m, which is the number of cluster heads.
Here, it is worth noting that n is the (average) number of nodes per each cluster and not the total
number of nodes in the system.

(ii) Lightly Loaded System
Under the light load condition, it is assumed that no request is pending. For a newly generated

request, the worst-case scenario occurs when the request is from cluster head m1 and the global
token is at cluster head m2. In order to fulfill this request, the algorithm would generate one local
token request message, one local token message, and (m-1) global token messages. Hence, in
order to fulfill the request, the total number of required messages amounts to (1+m). Thus, the
message complexity under light load conditions would be O(m). It is worth mentioning that in
strategic networks, the number of cluster heads is m << N, where N is the total number of nodes
in the system. Usually, in clustered VANETs, m ≤ √N.

6.2 Synchronization Delay

It is the time beyond a site leaves the CS and ahead of the next site enters the CS. It is the

Bharti Sharma, Ravinder Singh Bhatia, and Awadhesh Kumar Singh

47

performance metric that has significance under high load condition. It is obvious from the
message complexity analysis that there is a delay of only one message from a CS exit to the next
CS entry. Therefore, the synchronization delay would be T, where T is the propagation time of a
single message.

6.3 Response Time

The response time is important only for lightly loaded systems. It is the time interval a request
waits for its CS execution to be over after its request messages have been sent out. The message
complexity analysis show that the response time would be (m + 1)T, where m is the number of
clusters and T is the propagation time of a single message. Although, the value of m is constant,
the response time depends on the current position of the global token, because we have used
token forwarding, rather than token asking, among the cluster heads. Thus, it is noteworthy that
the response time would amount to (m + 1)T only in the worst case scenario. In the best case
scenario, when the global token is received at the requesting node’s cluster head immediately
after receiving the CS request, the response time would boil down to 2T (i.e., 1 request message
+ 1 local token message). Therefore, if we represent the response time as R, the following
relation holds as: 2T ≤ R ≤ (m + 1)T.

7. THE SIMULATION ANALYSIS
We simulated our protocol using NS-2 network simulator and considered a 500×500 grid. We

assumed that a suitable clustering algorithm was in place. The total number of nodes was varied
from 20 to 500. The mobility rate was considered from 8 m/sec to 40 m/sec with a pause time as
150 sec. The simulation time was given as 1,500 seconds. Initially, all clusters were assumed to
have the same number of nodes. We experimented with our protocol for the following variations
of network size: (i) by increasing the number of nodes per cluster and (ii) by increasing the
number of clusters when the number of node increases significantly. The results were
comparable. We also considered the random mobility model and we compared our protocol with

Fig. 2. The Request Load vs. the Number of Hops per CS Access

0

10

20

30

40

50

60

50 40 30 20 10 8 6 4 2

N
um

be
r o

f h
op

s/
 c

s a
ce

ss

Request load (number of requests/sec)

our protocol

 Baldoni et al.

A Token Based Protocol for Mutual Exclusion in Mobile Ad Hoc Networks

48

the Baldoni et al. [14] protocol. Since, the Baldoni et al. [14] protocol is non-fault tolerant, our
performance comparison only applies to fault-free cases. Nevertheless, the fault tolerance is
discussed in Section 8. Each point in the graphs shown below, were plotted after taking the
average of the values obtained from ten different runs. It is clear from Fig. 2 that upon
decreasing the request load, the number of hops per CS access monotonically decreased.
However, the trend was the opposite in the case of the Baldoni et al. [14] protocol.

Similarly, upon decreasing the request load, the number of messages decreased significantly
in our protocol. However, the decrease is not so significant in the case of the Baldoni et al. [14]
protocol (ref. Fig. 3).

Fig. 3. The Request Load vs. the Number of Messages

It is more interesting to note from Figs. 4, 5, and 6 that the number of messages shows a

downtrend with an increase in the number of requests under all three light, medium, and heavy
load conditions, respectively.

Fig. 4. The Effect of the Light Request Load

385

390

395

400

405

410

415

45 50 55 60 65 70 75

N
um

be
r o

f m
es

sa
ge

s

Request load

Request load vs number of messages

0

20

40

60

80

100

120

140

160

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

N
um

be
r o

f m
es

sa
ge

s

Request load (number of requests/sec)

 Baldoni et al.

our protocol

Bharti Sharma, Ravinder Singh Bhatia, and Awadhesh Kumar Singh

49

Fig. 5. The Effect of Medium Request Load

Fig. 6. The Effect of the Heavy Request Load

In order to evaluate the effect of the varying mobility rate, we considered 5 – 25 m/s, 25 – 100

m/s, and 100 – 200 m/s as the low, medium, and high mobility rates, respectively. We concluded,
as shown in Fig. 7, that the change in mobility rate only had a marginal effect on the number of
messages for varying request loads. Similarly, as shown in Fig. 8, we observed that there is not
significant change in the slope of the plots on low, medium, and high mobility rates. Therefore,
we can conclude that the impact of mobility is very low on the request processing time as well.
Moreover, the increase in request load does not trigger further increase in the request processing
time beyond a certain point. Therefore, our protocol delivers consistent performance under
heavy contention and high mobility.

355
360
365
370
375
380
385
390
395
400

100 150 175 200 250

N
um

be
r o

f m
es

sa
ge

se

Request load

Request load vs number of messages

0
50

100
150
200
250
300
350
400

200 250 300 350 400 450 500

N
um

be
r o

f m
es

sa
ge

s

Request load

Request load vs number of messages

A Token Based Protocol for Mutual Exclusion in Mobile Ad Hoc Networks

50

Fig. 7. The Effect of the Varying Mobility Rate on the Message Count

Fig. 8. The Effect of the Varying Mobility Rate on the Processing Time

8. FAULT TOLERANCE
We have proposed a dual global token (“primary” for mutual exclusion and “secondary” for

fault tolerance) mechanism to combat the loss of global tokens. We assumed that both of the
global tokens would not crash at the same time. We introduced a “secondary” global token
that has the three attributes of a source address, destination address, and a round number, and
included these attributes in the “primary” global token as well. For the sake of brevity, we
will henceforth call the “primary” global token primary and the “secondary” global token
secondary.

0

20

40

60

80

100

120

140

160

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

N
um

be
r

of
 m

es
sa

ge
s

Request load

low mobility
high mobility
medium mobility

0

5

10

15

20

25

30

38 50 58 69 116 132 150 170 190 215 235 241

Pr
oc

es
si

ng
 t

im
e

Request load

5 - 25m/s 25 - 100m/s 100 - 300m/s

Bharti Sharma, Ravinder Singh Bhatia, and Awadhesh Kumar Singh

51

8.1 Handling the Loss of a Global Token

A site can use the primary if the token contains the same site ID in its destination address
entry. Otherwise, the site forwards the primary towards the destination. Assume, that site i
forwards primary to site j and subsequently forwards the secondary to site j. Now, as a channel
in non-FIFO, there are two possibilities, as listed below.

(i) If the secondary reaches site j first, then site j holds the secondary and waits for the
primary until timer T expires and sends a “generate a new primary” message to site i. Now,
there could be two possible cases:

Case 1: The old primary was lost: The new primary will reach site j and site j forwards (after
using it, in case site j is hungry) the new primary to a successor, say site g.
Subsequently, site j forwards the secondary to site g.

Case 2: The old primary was blocked enroute: Now, the old (new) primary will reach site j.
Site j forwards (after using it, in case site j is hungry) the old (new) primary to a
successor, say site g. Subsequently, site j forwards the secondary to site g. The new
(old) primary, which is received later, will be consumed by site j, on the basis of
having a round number that is same as the old (new) primary.

(ii) If the primary reaches site j first, then site j uses it, in case site j is hungry, and then site j
forwards the primary to a successor, say site g. In the mean time, if site j receives the secondary
then site j forwards the secondary also, to site g, soon after sending the primary. However, if site
j is not hungry, it forwards the primary to a successor, say site g and waits for the secondary
until timer T expires. If site j receives the secondary then it forwards the secondary also, to site g.
Otherwise, site j generates a new secondary and forwards it to site g. The old secondary, which
is received later, will be consumed by site j on the basis of having the round number same as in
the new secondary. However, if the old secondary could not find a direct route to site j, then it
may reach some site, say h ≠ j, which will pass the secondary to site i, which is the sender of the
secondary. It will then generate the new primary and will send the new primary followed by the
secondary to the successor cluster head.

8.2 Handling the Site Crash

If the crashed site was the holder of the secondary, then the system will not come across any
new difficulty because the case is similar to the secondary that was lost/delayed, as mentioned
above. However, if site j crashed immediately after receiving the primary then the secondary
will not find a route to node j as it is unreachable, due to having crashed. Now, the secondary
will be routed to some site, say g ≠ j, which will check for site j in its 1-hop neighborhood. Now,
there are two possibilities:

Case 1: If site j is a 1-hop neighbor of site g, then it is easy for site g to forward the secondary
to site j.

Case 2: If site j is not a 1-hop neighbor of site g, then site g will pass the secondary to site i,
which is the sender of the secondary. Now, site i will generate the new primary and
will forward the new primary followed by secondary, to the successor cluster head.

8.3 Handling the Loss of a Local Token

The protocol handles the loss of a local token within the cluster by using the over and

A Token Based Protocol for Mutual Exclusion in Mobile Ad Hoc Networks

52

over&out messages as follows. After executing the CS, each node sends an over message to the
cluster head and forwards the local token, LTQ, to the next hungry node. When the cluster head
receives an over message from a node it makes an entry in the copy of the LTQ that remains
with the cluster head, corresponding to that node as its token request has been “served.” If a
local token is detected as lost in transit, the cluster head can regenerate the local token using the
copy of the LTQ that is available at the cluster head. As the over message is the record of
“served” nodes, the newly generated local token would be made available only to nodes that are
yet to be “served” in the current round. However, this mechanism may lead to simultaneous
availability of more than one local token within a cluster; thus, multiple nodes may enter CS,
which is the violation of safety property (mutual exclusion). Nevertheless, our protocol can
combat this situation using the following mechanism. Assume an arbitrary cluster C that has
cluster head CH. Now, say node N1, after executing CS, sends an over message to node CH and
passes the LTQ to node N2. Afterwards, say that the LTQ message suffered an excessive delay
and, thus, CH was timed out while waiting for the next over message. Hence, CH will suspect
the loss of LTQ and will generate a new local token, say LTQ'. However, it might so happen that
LTQ is not lost and only it got delayed excessively. Now, there are three possible cases:

(i) LTQ' reached node N2 first: node N2 will enter the CS and, after executing the CS node
N2 will discard the LTQ, which is received subsequently in case the LTQ contains the
same round number as the LTQ'.

(ii) LTQ and LTQ' both reached node N2 at the same time: node N2 discards the LTQ in case
LTQ contains the same round number as the LTQ' and subsequently node N2 enters the
CS.

(iii) LTQ reached node N2 first: node N2 will enter the CS and, after executing CS node N2
discards the LTQ' in case LTQ' contains the same round number as the LTQ.

9. CONCLUSION
This paper proposes a protocol to handle the problem of mutual exclusion in ad hoc networks.

In order to have the advantage of both worlds, the protocol uses both centralized and distributed
schemes at different levels. The scheme is able to deal with faults. It is robust and suitable for
long running applications. The message complexity of the protocol is remarkable under heavy
load conditions, as well as under light load conditions. The token asking schemes suffer poor
synchronization delay when they are used in the logical structures. Nevertheless, this loss has
been largely compensated by our dual token-based approach. In the dual token approach, which
is used by Wu-Cao-Raynal [16], if the primary token is lost in some round, say r, then the loss
of a primary token is not detected unless the secondary token completes two rounds, particularly,
rth and r+1th. Consequently, the latency involved in the new primary token generation is high.
Thus, the critical resource remains unutilized for a longer duration. However, in our scheme, the
token loss detection is timer based and the latency involved in the new primary token generation
is equal to the time it takes to propagate a single message. Therefore, our dual token based fault
tolerance scheme has less latency, as compared to the dual token approach used by Wu-Cao-
Raynal [16].

Bharti Sharma, Ravinder Singh Bhatia, and Awadhesh Kumar Singh

53

REFERENCE
[1] A. Kshemkalyani and M. Singhal, Distributed Computing: Principles, Algorithms, and Systems,

Cambridge University Press, NY, 2008, pp. 327-336.
[2] P. Saxena and J. Rai, “A Survey of Permission-based Mutual Exclusion Algorithms,” Journal of

Computer Standards and Interface, vol. 25, no. 2, 2003, pp. 159-181.
[3] B. Badrinath, A. Acharya and T. Imielinski, “Designing Distributed Algorithms for Mobile

Computing Networks,” Computer Communications, 19, 1996, pp. 309-320.
[4] R. Ghosh and H. Mohanty, “On Restructuring Distributed Algorithms for Mobile Computing,” IWDC

2002, LNCS 2571, 2002, pp. 224-233.
[5] M. Bertier, L. Arantes and P. Sens, “Distributed Mutual Exclusion Algorithms for Grid Applications:

A Hierarchical Approach,” Journal of Parallel and Distributed Computing, vol. 66, no. 1, January
2006, pp. 128–144.

[6] H. Taheri, P. Neamatollahi and M. Naghibzadeh, “A Hybrid Token-based Distributed Mutual
Exclusion Algorithm using Wraparound Two-Dimensional Array Logical Topology,” Information
Processing Letters, vol. 111, no. 17, September 2011, pp. 841–847.

[7] P. Neamatollahi, H. Taheri and M. Naghibzadeh, “Info-based Approach in Distributed Mutual
Exclusion Algorithms,” Journal of Parallel and Distributed Computing, vol. 72, no. 5, May 2012, pp.
650–665.

[8] L. Rodrigues, J. Cohen, L. Arantes and E. Duarte, “A Robust Permission-based Hierarchical
Distributed k-Mutual Exclusion Algorithm,” IEEE 12th International Symposium on Parallel and
Distributed Computing (ISPDC), 2013, pp. 151–158.

[9] M. Benchaiba, A. Bouabdallah, N. Badache and M. Ahmed-Nacer, “Distributed Mutual Exclusion
Algorithms in Mobile Ad Hoc Networks: An Overview,” ACM SIGOPS Operating Systems Review,
vol. 38, no. 1, 2004, pp. 74-89.

[10] B. Sharma, R. Bhatia and A. Singh, “DMX in MANETs: Major Research Trends Since 2004,” Int.
Conf. on Advances in Computing and Artificial Intelligence, ACAI’11, 2011, pp. 50-55.

[11] H. Hartenstein and K. Laberteaux, “A Tutorial Survey on Vehicular Ad Hoc Networks,” IEEE
Communications Magazine, June 2008, pp. 164-171.

[12] V. Kumar, J. Place and G. -C. Yang, “An Efficient Algorithm for Mutual Exclusion using Queue
Migration in Computer Networks,” IEEE Trans. Knowledge and Data Engineering, vol. 3, no. 3, 1991,
pp. 380-384.

[13] P. Chaudhury and T. Edward, “An O(√n) Distributed Mutual Exclusion Algorithm using Queue
Migration,” Journal of Universal Computer Science, vol. 12, no. 2, 2006, pp. 142-159.

[14] R. Baldoni, A. Virgillito and R. Petrassi, “A Distributed Mutual Exclusion Algorithm for Mobile Ad
Hoc Networks,” 7th IEEE Symposium on Computer and communications (ISCC’02), July 2002, pp.
539–545.

[15] S. Tamhane and M. Kumar, “A Token Based Distributed Algorithm for Supporting Mutual Exclusion
in Opportunistic Networks,” Pervasive and Mobile Computing, vol. 8, no. 5, October 2012, pp. 795–809.

[16] W. Wu, J. Cao and M. Raynal, “A Dual-token-based Fault Tolerant Mutual Exclusion Algorithm for
MANETs,” LNCS 4864, 2007, pp. 572–583.

Bharti Sharma
She received the MSc degree in Information Technology from MD Univ. Rohtak,
HR, India in 2003 and the MCA degree from the same Univ. in 2004. She is
faculty in the Department of Computer Application at DIMT Kurukshetra, HR,
India. Presently, she is working towards her PhD degree in the Department of
Computer Application at National Institute of Technology (NIT) Kurukshetra, HR,
India. Her field of research is Mobile Computing.

A Token Based Protocol for Mutual Exclusion in Mobile Ad Hoc Networks

54

Ravinder Singh Bhatia
He received the BTech degree in Electrical Engineering from GND Univ.
Amritsar, PB, India in 1987; MTech and PhD degrees in the same area from NIT
Kurukshetra in 1993 and 2008, respectively. Presently, he is Professor in the
Department of Electrical Engineering at NIT Kurukshetra. His research interests
include Distributed Systems, Wireless Sensor Networks, and Power Quality.

Awadhesh Kumar Singh
He received the BTech degree in Computer Science from Gorakhpur Univ.
Gorakhpur, UP, India in 1988; MTech and PhD degrees in the same area from
Jadavpur Univ. Kolkata, WB, India in 1998 and 2004, respectively. Since August
1991, he is faculty in the Department of Computer Engineering at NIT
Kurukshetra, where he is Professor, at present. His research interests include
Distributed Algorithms, Mobile Computing, and Fault Tolerance.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

