DOI QR코드

DOI QR Code

Development of Allometric Equations for V Age-class Pinus koraiensis in Mt. Taehwa Plantation, Gyeonggi-do

경기도 태화산 V 영급 잣나무(Pinus koraiensis) 조림지의 지상부 바이오매스 상대생장식 개발

  • Ryu, Daun (Dept. of Forest Sciences, Seoul National University) ;
  • Moon, Minkyu (Dept. of Forest Sciences, Seoul National University) ;
  • Park, Juhan (Dept. of Forest Sciences, Seoul National University) ;
  • Cho, Sungsik (Dept. of Forest Sciences, Seoul National University) ;
  • Kim, Taekyu (National Institute of Environmental Research) ;
  • Kim, Hyun Seok (Dept. of Forest Sciences, Seoul National University)
  • Received : 2014.02.28
  • Accepted : 2014.03.13
  • Published : 2014.03.30

Abstract

Allometric equations for leaf, branch, stem and total above ground biomass of Pinus koraeinsis trees were developed with diameter at breast height(DBH) of trees, which were growing in a pine plantation with the stand density of 410 tree $ha^{-1}$ and the average DBH of $29.1{\pm}5.2$ cm in Mt. Taewha, Gyeonggi. Damage by Acantholyda parki reduced leaf biomass compared to other studies, however, its contribution to total biomass was minimal among parts. Comprehensive analysis revealed that constant in allometric equation for total above ground biomass (logY=a + blogX) was affected by average DBH and stand density, however, constant b was not. At the stand level, biomass for leaf, brach, stem, total above ground biomass were 6.68 Mg $ha^{-1}$, 18.82 Mg $ha^{-1}$, 101.02 Mg $ha^{-1}$, 126.53 Mg $ha^{-1}$, respectively. We developed a Korean pine stand biomass regression, which explained about 98% of variation with DBH and stand density based on comprehensive analysis.

임분 밀도가 410tree $ha^{-1}$이며 평균 흉고직경이 $29.1{\pm}5.2cm$인 경기도 태화산의 V영급 잣나무 조림지에서 흉고직경을 독립변수로 하고 부위별 바이오매스를 종속변수로 하는 상대생장식을 만들었다. 잣나무 넓적 잎벌 피해로 인해 잎의 바이오매스가 낮게 나타났으나, 총 바이오매스에 미치는 영향은 미미하였다. 그간의 연구를 종합한 결과, 개체목 지상부 상대생장식(logY=a+blogX)의 모수 a는 평균 흉고직경과 임분밀도에 가장 큰 영향을 받는 것으로 나타났으나 b는 영향을 미치는 인자를 찾을 수 없었다. 임분 단위에서는 부위별로 잎은 6.68Mg $ha^{-1}$, 가지는 18.82Mg $ha^{-1}$, 줄기는 101.02Mg $ha^{-1}$로 나타났으며 이를 합한 지상부 총 바이오매스는 126.53Mg $ha^{-1}$로 나타났다. 국내 잣나무 임분의 지상부 바이오매스는 임령보다는 평균 흉고직경과 임분 밀도에 더 큰 영향을 받는 것으로 나타났으며 두 인자를 사용하여 국내 잣나무 임분 바이오매스를 98% 이상 설명하는 간단한 회귀식을 도출할 수 있었다.

Keywords

References

  1. Ahmed, R., P. Siqueira, S. Hensley, and K. Bergen, 2013: Uncertainty of forest biomass estimates in north temperate forests due to allometry: Implications for remote sensing. Remote Sensing 5(6), 3007-3036. https://doi.org/10.3390/rs5063007
  2. Beadle, C., D. Trieu, and C. Harwood, 2013: Thinning increases saw-log values in fast-growing plantations of acacia hybrid in Vietnam. Journal of Tropical Forest Science 25(1), 42-51.
  3. Chung, S. B., and S. C. Shin, 1994: Studies on the effects of black-tipped sawfly, acantholyda posticalis posticalis matsumura on the growth of the Korean white pine, Pinus koraiensis S. et Z. Journal of Korean Forest Society 83(4), 450-459. (in Korean with English abstract)
  4. Cutini, A., F. Chianucci, and M. C. Manetti, 2013: Allometric relationships for volume and biomass for stone pine (Pinus pinea L.) in Italian coastal stands. iForest-Biogeosciences & Forestry 6(6), 331-335. https://doi.org/10.3832/ifor0941-006
  5. Dixon, R. K., S. Brown, R. E. A.Houghton, A. Solomon, M. Trexler, and J. Wisniewski, 1994: Carbon pools and flux of global forest ecosystems. Science(Washington) 263(5144), 185-189. https://doi.org/10.1126/science.263.5144.185
  6. Gracia, M., and J. Retana, 2004: Effect of site quality and shading on sprouting patterns of holm oak coppices. Forest Ecology and Management 188(1), 39-49. https://doi.org/10.1016/j.foreco.2003.07.023
  7. Han, S. K., 2001: Biomass, nutrient distribution and litterfall in unthinned Korean white pine (Pinus koraiensis) plantation, 55pp. (in Korean with English abstract)
  8. Hara, K. L., and L. M. Nagel, 2006: A functional comparison of productivity in even-aged and multiaged stands: A synthesis for Pinus ponderosa. Forest Science 52(3), 290-303.
  9. Johansson, K., 1992: Effects of initial spacing on the stem and branch properties and graded quality of Picea abies (L.) karst. Scandinavian Journal of Forest Research 7(1-4), 503-514. https://doi.org/10.1080/02827589209382743
  10. Kim, C. S., K. S. Lee, Y. M. Son, and H. S. Cho, 2013: Allometric equations and biomass expansion factors in an age-sequence of black pine (Pinus thunbergii) stands. Journal of Forest Research 102(4), 543-549. (in Korean with English abstract) doi: 10.14578/jkfs.2013.102.4.543
  11. Kim, S., B. Lee, Y. Seo, and Y. Lee, 2011: Crown fuel characteristics and allometric equations of Pinus densiflora stands in Youngju region. Journal of Korean Forest Society 100(2), 266-272. (in Korean with English abstract)
  12. Kim, S., Y. Lee, M. Jang, Y. Seo, K. Koo, S. C. Jung, and K. Kim, 2012: Above-ground biomass and crown fuel characteristics of Pinus densiflora in Yangyang, Gangwon province. Journal of Korean Forest Society 101(2), 244-250. (in Korean with English abstract)
  13. Kim, Y. C., D. J. Chung, and H. R. Kim, 1999: A study on biomass of Korean white pine (Pinus koraiensis) artificial plantation. Institute of Life Science & Resources 20, 32-37. (in Korean with English abstract)
  14. Kinerson, R., K. Higginbotham, and R. Chapman, 1974: The dynamics of foliage distribution within a forest canopy. Journal of Applied Ecology 11(1), 347-353. https://doi.org/10.2307/2402026
  15. Kong, W. S., 2004: Species composition and distribution of native Korean conifers. The Korean Geographical Society 39(4), 528-543. (in Korean with English abstract)
  16. Korean Forest Serviece, 2005: (Sustainable) Forest Resource Management Manual, Korea Forest Research Institute.
  17. Korean Forest Serviece, 2010: Carbon Emission Factor (cff) by Main Species for Forest Greenhouse Gases, Korea Forest Research Institute.
  18. Korean Forest Serviece, 2011: Management for Stand Quality in Korean Pine.
  19. Korean Forest Serviece, 2012: Economic Tree Species 3; Korean pine, Korea Forest Research Institute, 168pp.
  20. Kwon, K. C., and D. K. Lee, 2006: Biomass and energy content of Pinus koraiensis stand planted in mt. Wolak. Mokchae Konghak 34(4), 66-75. (in Korean with English abstract)
  21. Kwon, T. H., 1982: Studies on biomass productivity of Pinus koraiensis in different-aged plantations, 58pp. (in Korean with English abstract)
  22. Lee, D. H., and J. W. Hwang, 2000: Biomass productivity of Pinus koraiensis S. et Z. By the regression equation. Journal of Resource Development 19, 77-82. (in Korean with English abstract)
  23. Lee, D. K., and G. T. Kim, 1997: Tree form and biomass allocation of Quercus species, Larix leptolepis (Sieb. et Zucc.) gordon and Pinus koraiensis Sieb. et Zucc. in Kwangju-gun, Kyunggi-do. Journal of Korean Forest Society 86(2), 208-213. (in Korean with English abstract)
  24. Lee, K. J., and Park, I. H., 1987: Primary production and nutrients distribution in 22-year-old Pinus koraiensis and Quercus mongolica stands in Kwangju district. The Korea Forestry Energy Research Society 7(1), 11-21. (in Korean with English abstract)
  25. Lee, Y. J., Y. O. Seo, S. M. Park, J. K. Pyo, R. H. Kim, Y. M. Son, K. H. Lee, and H. H. Kim, 2009: Estimation of biomass for 27 years old Korean pine (Pinus koraiensis) plantation in Gangneung, Gangwon-province. Journal of Agriculture & Life Science 43(1), 1-8. (in Korean with English abstract)
  26. Lehtonen, A., R. Makipaa, J. Heikkinen, R. Sievanen, and J. Liski, 2004: Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188(1), 211-224. https://doi.org/10.1016/j.foreco.2003.07.008
  27. Levia Jr, D. F., 2008: A generalized allometric equation to predict foliar dry weight on the basis of trunk diameter for eastern white pine (pinus strobus L.). Forest Ecology and Management 255(5), 1789-1792. https://doi.org/10.1016/j.foreco.2007.12.001
  28. Li, X., M. J. Yi, Y. Son, P. S. Park, K. H. Lee, Y. M. Son, R. H. Kim, and M. J. Jeong, 2010: Biomass and carbon storage in an age-sequence of Korean pine (Pinus koraiensis) plantation forests in central Korea. Journal of Plant Biology 54(1), 33-42. https://doi.org/10.1007/s12374-010-9140-9
  29. Moser, G., C. Leuschner, D. Hertel, S. Graefe, N. Soethe, and S. Iost, 2011: Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): The role of the belowground compartment. Global Change Biology 17(6), 2211-2226. https://doi.org/10.1111/j.1365-2486.2010.02367.x
  30. Niemisto, P., 2013: Effect of growing density on biomass and stem volume growth of downy birch stands on peatland in Western and Northern Finland. Silva Fennica 47(4), article id 1002.
  31. Noh, N. J., Y. H. Son, R. H. Kim, K. Y. Seo, K. W. Seo, J. W. Koo, J. H. Kyung, J. S. Kim, Y. J. Lee, I. H. Park, K. H. Lee, and Y. M. Son, 2005: Biomass of Korean Pine (Pinus koraiensis) in Gapyeong. Korean Journal of Forest Measurements 8, 75-82. (in Korean with English abstract)
  32. Nutto, L., P. Spathelf, and R. Rogers, 2005: Managing diameter growth and natural pruning of Parana pine, Araucaria angustifolia (Bert.) O Ktze., to produce high value timber. Annals of Forest Science 62(2), 163-173. doi:10.1051/forest:2005008
  33. Oliver, C. D., 1980: Forest development in North America following major disturbances. Forest Ecology and Management 3, 153-168. https://doi.org/10.1016/0378-1127(80)90013-4
  34. Poorter, L. and F. Bongers, 2006: Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87(7), 1733-1743. https://doi.org/10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
  35. Ritchie, M. W., J. Zhang, and T. A. Hamilton, 2013: Aboveground tree biomass for Pinus ponderosa in Northeastern California. Forests 4(1), 179-196. https://doi.org/10.3390/f4010179
  36. Shaiek, O., D. Loustau, P. Trichet, C. Meredieu, B. Bachtobji, S. Garchi, and M. H. E. Aouni, 2011: Generalized biomass equations for the main aboveground biomass components of maritime pine across contrasting environments. Annals of Forest Science 68(3), 443-452. https://doi.org/10.1007/s13595-011-0044-8
  37. Sharma, C., S. Gairola, N. Baduni, S. Ghildiyal, and S. Suyal, 2011: Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya, India. Journal of biosciences 36(4), 701-708. https://doi.org/10.1007/s12038-011-9103-4
  38. Shin, J. H. and D. K. Lee, 1985: Total nitrogen distribution and seasonal changes in inorganic nitrogen at a Pinus koraiensis stand in Kwangju-gun, Kyonggi-do, Korea. Journal of Korean Forest Society 69(1), 56-68. (in Korean with English abstract)
  39. Son, Y., J. W. Hwang, Z. S. Kim, W. K. Lee, and J. S. Kim, 2001: Allometry and biomass of Korean pine (Pinus koraiensis) in Central Korea. Bioresource technology 78(3), 251-255. https://doi.org/10.1016/S0960-8524(01)00012-8
  40. Spiecker, H., 2004: Develop high-quality wood oak. Chungnam National University Press. 182.
  41. Sprugel, D., 1983: Correcting for bias in log-transformed allometric equations. Ecology 64(1), 209-210. https://doi.org/10.2307/1937343
  42. United Nations, 1998: Kyoto protocol to the United Nations framework convention on climate change, 20pp.
  43. Unger, M., J. Homeier, and C. Leuschner, 2012: Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the Equatorial Andes. Oecologia 170(1), 263-274. https://doi.org/10.1007/s00442-012-2295-y
  44. Xue, L. and A. Hagihara, 2008: Density effects on organs in self-thinning Pinus densiflora Sieb. et Zucc. Stands. Ecological research 23(4), 689-695. https://doi.org/10.1007/s11284-007-0427-3
  45. Whittaker, R. H., and P. L. Marks, 1975: Methods of Assessing Terrestrial Productivity. 55-118.
  46. Yi, M. J., 1998: Changes in aboveground biomass and nutrient accumulation of the Korean-pine (Pinus koraiensis) plantation by stand age at Kangwondo province. Journal of Korean Forest Society 87(2), 276-285. (in Korean with English abstract)
  47. Zianis, D., G. Xanthopoulos, K. Kalabokidis, G. Kazakis, D. Ghosn, and O. Roussou, 2011: Allometric equations for aboveground biomass estimation by size class for Pinus Brutia Ten. trees growing in North and South Aegean Islands, Greece. European Journal of Forest Research 130(2), 145-160. doi:10.1007/s10342-010-0417-9

Cited by

  1. Variation in sap flux density and its effect on stand transpiration estimates of Korean pine stands vol.20, pp.1, 2015, https://doi.org/10.1007/s10310-014-0463-0
  2. Effects of thinning intensities on tree water use, growth, and resultant water use efficiency of 50-year-old Pinus koraiensis forest over four years vol.408, 2018, https://doi.org/10.1016/j.foreco.2017.09.031
  3. Changes in spatial variations of sap flow in Korean pine trees due to environmental factors and their effects on estimates of stand transpiration vol.13, pp.6, 2016, https://doi.org/10.1007/s11629-015-3793-2
  4. Estimation of Specific Leaf Area Index Using Direct Method by Leaf Litter in Gwangneung, Mt. Taewha and Mt. Gariwang vol.18, pp.1, 2016, https://doi.org/10.5532/KJAFM.2016.18.1.1