Abstract
$Tb^{3+}$ - or $Ce^{3+}$-doped $LaBO_3$ phosphors were synthesized by a solid-state reaction process with different concentrations of activator ions. The XRD spectra showed the monoclinic $LaBO_3$ pattern with the main peak occurring at (014) plane, irrespective of the kind of activator ions. The crystallite size was determined by using the Scherrer formula, and the maximum was obtained with an activator concentration of 0.05 mol for both phosphors. The emission spectra of $LaBO_3$ phosphors doped with $Tb^{3+}$ ions under excitation at 269 nm exhibited three major emission bands at 488, 544, and 587 nm. The strongest emission was green at 544 nm owing to the $^5D_4-^7F_5$ transition at a $Tb^{3+}$ ion concentration of 0.05 mol. For the $Ce^{3+}$-doped $LaBO_3$ phosphors, one strong blue band centered at 469 nm and weak multipeaks were observed. These results suggest that the optimum green and blue emission can be realized by controlling the concentration and type of activator ions incorporated in the host crystal.