DOI QR코드

DOI QR Code

다양한 산 촉매에서 자이란 가수분해 특성

Study on the Hydrolysis Kinetics of Xylan on Different Acid Catalysts

  • 나병일 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 이재원 (전남대학교 농업생명과학대학 산림자원학부)
  • Na, Byeong-Il (Department of Forest Products and Technology, Chonnam National University) ;
  • Lee, Jae-Won (Department of Forest Products and Technology, Chonnam National University)
  • 투고 : 2013.08.07
  • 심사 : 2013.12.12
  • 발행 : 2014.04.01

초록

본 연구에서는 $120{\sim}150^{\circ}C$에서 다양한 산 촉매에 의한 자이란 가수분해 거동을 조사하였다. 또한 자이란에서 자이로스 생성과 자이로스로부터 푸르푸랄 분해에 대한 kinetic 인자를 분석하였다. 높은 반응온도와 산 촉매 농도는 자이란 가수분해와 자이로스 분해를 촉진하였다. 최대 반응속도상수($k_1$)에 대한 가수분해 조건은 산 촉매에 따라 다르게 나타났다. 황산, 옥살산, 말레산 중에서 자이란 반응속도상수($k_1$)는 황산 100 mM로 $120^{\circ}C$에서 반응하였을 때 $0.0241min^{-1}$로 가장 높게 나타났다. 하지만 황산은 옥살산, 말레산과 비교하여 자이로스 분해를 더욱 유도하여 상대적으로 높은 푸르푸랄을 생성하였다. 자이란 분해에 관여하는 활성화 에너지는 황산에서 가장 높게 나타났다.

In this study, we investigated kinetic model for the acid-catalyzed xylan hydrolysis at temperature $120{\sim}150^{\circ}C$. Also, we analyzed the kinetic parameters for xylose production and furfural decomposition. The hydrolysis of xylan and the degradation of xylose were promoted by high reaction temperature and acid concentration. The optimal hydrolysis condition for the highest reaction rate constants ($k_1$) was different depending on the acid catalysts. Among sulfuric, oxalic and maleic acid, the xylan reaction rate constants ($k_1$) to xylose had the highest value of $0.0241min^{-1}$ when 100 mM sulfuric acid was used at $120^{\circ}C$. However, sulfuric acid induced more xylose degradation compared to oxalic and maleic acid hydrolysis. The activation energy for xylan degradation was the highest when sulfuric acid was used.

키워드

참고문헌

  1. Sun, Y. and Cheng, J., "Hydrolysis of Lignocellulosic Materials for Ethanol Production," Bioresour. Technol., 83, 1-11(2002). https://doi.org/10.1016/S0960-8524(01)00212-7
  2. Jensen, J. E., Morinelly, K. R., Gossen, K. R., Brodeur-Campbell, M. J. and Shonnard, D. R., "Effects of Dilute Acid Pretreatment Conditions on Enzymatic Hydrolysis Monomer and Oligomer Sugar Yields for Aspen, Balsam, and Switchgrass," Bioresour. Technol., 101, 2317-2325(2010). https://doi.org/10.1016/j.biortech.2009.11.038
  3. Soderstrom, J., Pilcher, L., Galbe, M. and Zacchi, G., "Two-step Steam Pretreatment of Softwood by Dilute $H_2SO_4$ Impregnation for Ethanol Production," Biomass Bioenergy, 24, 475-486(2003). https://doi.org/10.1016/S0961-9534(02)00148-4
  4. Han, M., Kim, Y., Kim, Y., Chung, B. and Choi, G. W., "Bioethanol Production from Optimized Pretreatment of Cassava Stem," Korean J. Chem. Eng., 28, 119-125(2011). https://doi.org/10.1007/s11814-010-0330-4
  5. Kim, J., "The Characteristics of Alkaline Pretreatment Methods of Cellulosic Biomass," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51, 303-307(2013). https://doi.org/10.9713/kcer.2013.51.3.303
  6. Wingre, A., Galbe, M. and Zacchi, G., "Energy Consideration for a SSF-based Softwood Ethanol Plant," Bioresour. Technol., 99, 222-231(2008). https://doi.org/10.1016/j.biortech.2006.11.026
  7. Kenealy, W., Horn, E. and Houtman, C., "Vapor-phase Diethyl Oxalate Pretreatment of Wood Chips," Holzforschung, 61, 223-229(2007).
  8. Kootstra, A. M. J., Mosier, N. S., Scott, E. L. and Beeftink, H. H., "Differential Effects of Mineral and Organic Acids on the Kinetics of Arabinose Degradation Under Lignocellulose Pretreatment Conditions," Biochem. Eng. J., 43, 92-97(2009). https://doi.org/10.1016/j.bej.2008.09.004
  9. Lee, J. W. and Jeffries, T. W., "Efficiencies of Acid Catalysts in the Hydrolysis of Lignocellulosic Biomass over a Range of Combined Severity Factors," Bioresour. Technol., 102, 5884-5890(2011). https://doi.org/10.1016/j.biortech.2011.02.048
  10. Carrasco, F. and Roy, C., "Kinetic Study of Dilute-acid-pre-hydrolysis of Xylan Containing Biomass," Wood Sci. Technol. 26, 189-208(1992).
  11. Tellez-Luis, S. J., Ramirez, J. A. and Vazquez, M., "Methematical Modelling of Hemicellulose Sugar Production from Sorghum Straw," J. Food Eng., 52, 285-291(2002). https://doi.org/10.1016/S0260-8774(01)00117-0
  12. Rahman, S. H. A., Choudhury, J. P. and Ahmad, A. L., "Production of Xylose from Oil Palm Empty Fruit Bunch Fiber Using Sulfuric Acid," Biochem. Eng. J., 30, 97-103(2006). https://doi.org/10.1016/j.bej.2006.02.009
  13. Mosier, N. S., Sarikaya, A., Ladisch, C. M. and Ladisch, M. R., "Characterization of Dicarboxylic Acids for Cellulose Hydrolysis," Biotechnol. Progress, 17, 474-480(2001). https://doi.org/10.1021/bp010028u
  14. Liu, X., Lu, M., Ai, N., Yu, F. and Ji, J., "Kinetic Model Analysis of Dilute Sulfuric Acid-catalyzed Hemicelluloses Hydrolysis in Sweet Sorghum Bagasse for Xylose Production," Ind. Crops Products, 38, 81-86(2012). https://doi.org/10.1016/j.indcrop.2012.01.013
  15. Shu, C. Y., Alan, B. and David, R. S., "Kinetic Characterization For Dilute Sulfuric Acid Hydrolysis of Timber Varieties and Switchgrass," Bioresour. Technol. 99, 3855-3863(2008). https://doi.org/10.1016/j.biortech.2007.06.046

피인용 문헌

  1. Effects of Main Constituents of W/O Emulsion on Removal of Acetic Acid in a Simulated Hemicellulosic Hydrolysate vol.52, pp.6, 2014, https://doi.org/10.9713/kcer.2014.52.6.789
  2. One-pot integrated processing of biopolymers to furfurals in molten salt hydrate: understanding synergy in acidity vol.19, pp.16, 2017, https://doi.org/10.1039/C7GC01709J