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Abstract

Type I hybrid censoring scheme is the combination of the Type I and Type II
censoring scheme introduced by Epstein (1954). Epstein considered a hybrid censoring
sampling scheme in which the life testing experiment is terminated at a random time
T ∗, which is the time that happens first among the following two; time of the kth unit
is observed or time of the experiment length set in advance. The likelihood function of
this scheme from the Rayleigh distribution cannot be solved in a explicit solution and
thus we approximate the function by the Taylor series expansion. In this process, we
propose four different methods of expansion skill.

Keywords: Approximate maximum likelihood estimator, Rayleigh distribution, Taylor
series expansion, Type I hybrid censoring scheme.

1. Introduction

Consider a life-testing experiment where n identical units are put. Assume thatX1, X2, · · · ,
Xn denote the corresponding lifetimes from a distribution. The ordered lifetimes of these
units are denoted by X1:n, X2:n, · · · , Xn:n. The probability density function (p.d.f) g(x) and
cumulative density function (c.d.f) G(x) of the random variable X having the Rayleigh
distribution are given by

g(x) =
x

σ2
exp

[
− x2

2σ2

]
, x > 0, σ > 0, (1.1)

and

G(x) = 1− exp

[
− x2

2σ2

]
, x > 0, σ > 0, (1.2)
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respectively, where σ is a scale parameter. The Rayleigh distribution is a suitable model for
life testing studies. Polovko (1968), Dyer and Whisenand (1973) demonstrated the impor-
tance of this distribution in electro vacuum devices and communication engineering. One
major application of this model is used in analyzing wind speed data. This statistical model
was first introduced by Rayleigh (Rayleigh, 1880). Siddiqui (1962) discussed the origin and
properties of the Rayleigh distribution. Several authors have contributed to this model.
Balakrishnan studied approximate maximum likelihood estimator (MLE) of Rayleigh dis-
tribution from the Type II censored sample in 1989. Han and Kang (2006a) obtained a
approximate MLE of known parameter Rayleigh distribution from the multiply Type II
censored sample. Han and Kang (2006b) obtained a approximate MLE of two parameter
Rayleigh distribution from the multiply Type II censored sample. Kang and Jung (2009)
obtained a approximate MLE of double Rayleigh distribution from the progressive Type
II censored sample. Kim and Han (2009) discussed estimation of the scale parameter of
the Rayleigh distribution under general progressive censoring. Lee et al. (2011) obtained a
Bayes estimator under the Rayleigh distribution with the progressive Type II right censored
sample.

Type I hybrid censoring schemes are the combination of the Type I and Type II censor-
ing scheme introduced by Epstein (1954). Epstein considered a hybrid censoring sampling
scheme in which the life testing experiment is terminated at a random time T ∗, which is the
time that those happens first among the following two; time of the kth unit is observed or
time of the experiment length set in advance. In other words, T ∗ = min{xr+k:n, T}, where
r ∈ {0, 1, 2, 3, · · · , n}, T ∈ (0,∞) is fixed in advance, Xr:n denote the rth ordered failure
time when the sample size is n, k is the number of failures wanted to be observed in advance.

The rest of paper consists as follows; In section 2, we introduce Type I hybrid censoring
scheme. In section 3, we derive approximate MLEs of the scale parameter σ for the Rayleigh
distribution from the Type I hybrid censoring samples. The scale parameter is estimated
with approximate MLE skill and four different way of Taylor series expansion is used. In
Secton 4, the description of different estimators that are compared by performing the Monte
Carlo simulation is presented.

2. Type I hybrid censoring scheme

Type I hybrid censoring scheme described as follows. Fix 1 < r < n, and set terminating
time T and number of units to be observed k in advance. If the (r+ k)th unit occurs before
time T , the experiment terminates at the (r + k)th point. This is the same as Type II
censoring scheme. If the (r + k)th unit occurs after time T , the experiment terminates at
the time T . In case of this, final observation is Xr+s:n. This is the same as Type I censoring
scheme.

If the failure time of the units are following Rayleigh distribution, whose p.d.f is (1.1), the
likelihood function based on the Type I hybrid censored data is given by

L =
n!

r!(n− r −D)!
[G(xr+1:n)]

r
[1−G(T ∗)]

n−r−D

[
r+D∏
i=r+1

g(xi:n)

]
, (2.1)

where D = k, if xr+k:n < T and T = s, otherwise.
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Figure 2.1 Scheme of Type I hybrid censoring data

Let zi:n = xi:n/σ and T ∗σ = T ∗/σ, where σ > 0. Then the p.d.f and c.d.f of Rayleigh
function can be obtained as

f(zi:n) = zi:nexp

[
−z

2
i:n

2

]
, (2.2)

and

F (zi:n) = 1− exp

[
−z

2
i:n

2

]
, (2.3)

respectively.
Also, the likelihood function (2.1) can be written as

L =
n!

r!(n− r −D)!
σ−D [F (zr+1:n)]

r
[1− F (T ∗σ )]

n−r−D

[
r+D∏
i=r+1

f(zi:n)

]
, (2.4)

From (2.4), the log-likelihood function can be expressed as

lnL = C −Dlnσ + rlnF (zr+1:n) + (n− r −D)ln [1− F (T ∗σ )] +

r+D∑
i=r+1

f(zi:n). (2.5)

On differentiating the log-likelihood function (2.5) with respect to σ and equating to zero,
we obtain the estimating equation as follows;

dlnL

dσ
= − 1

σ

[
2D + rzr+1:n

f(zr+1:n)

F (zr+1:n)
− (n− r −D)T ∗2σ −

r+D∑
i=r+1

z2i:n

]
= 0. (2.6)

However, the equation (2.6) cannot be solved in a explicit solution for σ unless r = 0. To
obtain approximate, but explicit solution of the likelihood function (2.6), we may use the
Taylor series expansion.
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3. Approximate maximum likelihood estimator

Balakrishnan (1989) suggested approximate MLEs which is the alternate of the MLE for
the uncalculative likelihood function. See for example the work of Cho et al. (2013), Kang
and Lee (2013), and Lee and Lee (2012).

We expand f(zr+1:n)/F (zr+1:n) or zr+1:nf(zr+1:n)/F (zr+1:n) in (2.6) in a Taylor series
expansion on the point of ξ = F−1(p) =

√
−2lnq, where p = (r + 1)/(n+ 1) and q = 1− p.

Since there cannot exist an explicit from of (2.6), Blakrishnan (1989) derived approximate
MLE with the expansion of f(zr+1:n)/F(zr+1:n). We use different ways of approxiamtion; ap-
proximate F(zr+1:n)'p before the Taylor series expansion, and expand zr+1:nf(zr+1:n)/F(zr+1:n)
at once. Four different expansion are as follows;

f(zr+1:n)

F (zr+1:n)
' f(ξ)

F (ξ)
+

[
f(ξ)

F (ξ)

]′
(zr+1:n − ξ)

=
ξ(1− p)

p
+

[
f ′(ξ)F (ξ)− f2(xi)

F 2(ξ)

]
(zr+1:n − ξ)

=

[
ξq

p
− q

p

(
1 +

2lnq

p

)
ξ

]
+

[
q

p

(
1 +

2lnq

p

)]
zr+1:n

= α1 + β1zr+1:n, (3.1)

f(zr+1:n) ' 1

p
[f(ξ) + f ′(ξ)(zr+1:n − ξ)]

=
ξ(1− p)

p
+

[
f ′(ξ)

p

]
(zr+1:n − ξ)

=

[
q

p
(−2lnq)

1.5

]
+

[
q

p
(1 + 2lnq)

]
zr+1:n

= α2 + β2zr+1:n, (3.2)

zr+1:n
f(zr+1:n)

F (zr+1:n)
' ξf(ξ)

F (ξ)
+

[
ξf(ξ)

F (ξ)

]′
(zr+1:n − ξ)

=
ξ2q

p
+
ξq

p

(
2 +

2lnq

p

)
(zr+1:n − ξ)

=

[
ξ2q

p
− ξ2q

p

(
2 +

2lnq

p

)]
+

[
ξq

p

(
2 +

2lnq

p

)]
zr+1:n

= α3 + β3zr+1:n, (3.3)
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zr+1:nf(zr+1:n) ' zr+1:nf(zr+1:n)

p

=
1

p
[ξf(ξ) + [ξf(ξ)]′(zr+1:n − ξ)]

=
ξ2q

p
+

1

p
[f(ξ) + ξf ′(ξ)] (zr+1:n − ξ)

=
ξ2q

p
+
ξq

p
(2 + 2lnq)(zr+1:n − ξ)

=

[
ξ2q

p
− ξ2q

p
(2 + 2lnq)

]
+

[
ξq

p
(2 + 2lnq)zr+1:n

]
= α4 + β4zr+1:n, (3.4)

where

α1 =
q

p2
(−2lnq)3/2, β1 =

q

p

(
1 +

2lnq

p

)
,

α2 =
q

p
(−2lnq)3/2, β2 =

q

p
(1 + 2lnq) ,

α3 = 2
qlnq

p

(
1 +

2lnq

p

)
, β3 = 2

q

p

√
−2lnq

(
1 +

lnq

p

)
,

α4 =
q

p
(2lnq)(1 + 2lnq), β4 = 2

q

p

√
−2lnq (1 + lnq) .

By substituting the equations (3.1) and (3.2) into (2.6), we may approximate the equation
(2.6) by

dlnL

dσ
' − 1

σ

[
2D + rzr+1:n (αj + βjzr+1:n)− (n− r −D)T ∗2σ −

r+D∑
i=r+1

z2i:n

]
= 0, (3.5)

where j = 1, 2.
By solving equation (3.5) for σ, we derive the approximate MLEs of σ as

σ̂j =
−B1,j +

√
B2

1,j + 8DC1,j

4D
, (3.6)

where B1,j = rαjxr+1:n, C1,j = −rβjx2r+1:n + (n− r −D)T ∗2 +
∑r+D
i=r+1 x

2
i:n, j = 1, 2.

By substituting the equations (3.3) and (3.4) into (2.6), we may approximate the equation
(2.6) by

dlnL

dσ
' − 1

σ

[
2D + r (αj + βjzr+1:n)− (n− r −D)T ∗2σ −

r+D∑
i=r+1

z2i:n

]
= 0, (3.7)
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where j = 3, 4.
By solving equation (3.7) for σ, we derive the approximate MLEs of σ as

σ̂j =
−B2,j +

√
B2

2,j + 4AjC2,j

2Aj
, (3.8)

where Aj=2D+rαj , B2,j=rβjxr+1:n, C2,j=(n− r −D)T ∗2+
∑r+D
i=r+1 x

2
i:n, j = 3, 4.

4. Illustrative example and simulation results

4.1. Illustrative example

In this example, we analyze the ball bearing data, which was given by Caroni (2002) and
represents the failure times of 25 ball bearings in the endurance test. The observed failure
times are shown in Table 4.1. For this data set, Raqab and Wilson (2002) indicated that the
one-parameter Rayleigh distribution provides a satisfactory fit.

Table 4.1 Failures of 25 ball bearing data for example

i 1 2 3 4 5 6 7 8 9 10
Xi 0.1788 0.2892 0.3300 0.4152 0.4212 0.4560 0.4848 0.5184 0.5196 0.5412
i 11 12 13 14 15 16 17 18 19 20
Xi 0.5556 0.6780 0.6780 0.6780 0.6864 0.6864 0.6888 0.8412 0.9312 0.9864
i 21 22 23 24 25
Xi 1.0512 1.0584 1.2792 1.2804 1.7340

We make the rule that whether number of units are 14 or experiment time is 1.7, the
experiment is terminated. The observation of this endurance test started after 3 units are
failed already (i.e., r = 3, k = 14, T = 17). From the Type I hybrid censoring scheme, we
can obtain σ̂1 = .5494, σ̂2 = .5201, σ̂3 = .5393 and σ̂4 = .5235.

4.2. Simulation Results

To compare four different approximate MLEs of the scale parameter σ, we simulated the
mean square error (MSE) and bias for four estimators by Monte Carlo simulations with
1,000 sets of data. Type I hybrid censored samples for sample size n = 20, 30 and 40 is used
in this simulation.
k is the number of observed units set in advance, r is the number of units censored before

the beginning of the observation and T is the length of time of experiment set in advance.
We compare several different conditions of k and T , and check the movement of MSEs and

bias. k varies 50%, 60% and 70% of n, T varies 1.5, 1.7 and 1.9. We compare approximate
MLEs in terms of MSE and bias. From the Table 4.1 as the number of full units are larger,
the MSEs of approximate MLEs are getting smaller. As the number of observed units are
smaller, the MSEs of approximate MLEs get larger. As the length of experiment time is
longer, the MSEs of approximate MLEs get smaller.

From Table 4.1, the sizes of MSEs of four estimators are MSE(σ̂3)<MSE(σ̂1)<MSE(σ̂2)<
MSE(σ̂4). Thus, σ3 is the best approximate MLE for the Type I hybrid censoring scheme
from the Rayleigh distribution.
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Table 4.2 Simulation results of Type I hybrid censoring scheme

MSE (bias)
n r k T σ̂1 σ̂2 σ̂3 σ̂4

20

3 14
1.7 .0177 (.0118) .0200 (.0078) .0164 (-.084) .0205 (.0120)
1.9 .0161 (.0060) .0178 (.0007) .0153 (-.0127) .0181 (.0045)
2.1 .0143 (.0006) .0157 (-.0058) .0140 (-.0173) .0158 (-.0023)

4 12
1.7 .0182 (.0097) .0215 (.0035) .0168 (-.0188) .0219 (.0074)
1.9 .0164 (.0034) .0189 (-.0049) .0158 (-.0235) .0191 (-.0014)
2.1 .0148 (-.0006) .0167 (-.0102) .0147 (-.0269) .0167 (-.0068)

5 10
1.7 .0187 (.0055) .0226 (-.0024) .0177 (-.0309) .0229 (.0005)
1.9 .0168 (.0004) .0196 (-.0098) .0167 (-.0347) .0197 (-.0071)
2.1 .0156 (-.0020) .0178 (-.0133) .0159 (-.0367) .0178 (-.0107)

30

4 22
1.7 .0112 (.0113) .0125 (.0083) .0106 (-.0042) .0127 (.0117)
1.9 .0103 (.0071) .0114 (.0034) .0099 (-.0072) .0115 (.0064)
2.1 .0095 (.0031) .0103 (-.0012) .0093 (-.0105) .0103 (.0016)

6 18
1.7 .0115 (.0100) .0135 (.0062) .0108 (-.0161) .0137 (.0092)
1.9 .0105 (.0051) .0120 (-.0002) .0102 (-.0195) .0121 (.0025)
2.1 .0098 (.0029) .0110 (-.0031) .0098 (-.0213) .0110 (-.0005)

7 16
1.7 .0119 (.0076) .0139 (.0035) .0113 (-.0239) .0141 (.0060)
1.9 .0107 (.0032) .0121 (-.0028) .0107 (-.0270) .0122 (-.0005)
2.1 .0103 (.0022) .0115 (-.0042) .0104 (-.0278) .0116 (-.0019)

40

6 28
1.7 .0090 (.0059) .0103 (.0046) .0086 (-.0107) .0104 (.0073)
1.9 .0083 (.0025) .0094 (.0003) .0081 (-.0129) .0094 (.0028)
2.1 .0077 (-.0006) .0086 (-.0035) .0077 (-.0155) .0086 (-.0012)

8 24
1.7 .0092 (.0049) .0108 (.0032) .0088 (-.0197) .0110 (.0056)
1.9 .0084 (.0008) .0097 (-.0024) .0084 (-.0225) .0097 (-.0002)
2.1 .0080 (-.0009) .0091 (-.0047) .0082 (-.0239) .0906 (-.0025)

10 20
1.7 .0094 (.0029) .0114 (.0000) .0095 (-.0302) .0115 (.0020)
1.9 .0087 (-.0001) .0101 (-.0045) .0091 (-.0323) .0102 (-.0026)
2.1 .0085 (-.0007) .0098 (-.0053) .0090 (-.0328) .0099 (-.0034)
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