DOI QR코드

DOI QR Code

Removal Characteristics of Fluoride Ions by PSf-Al(OH)3 Beads Immobilized Al(OH)3 with Polysulfone

Polysulfone으로 Al(OH)3를 고정화한 PSf-Al(OH)3 비드에 의한 불소 이온의 제거 특성

  • Jeon, Jin-Woo (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • Received : 2014.02.20
  • Accepted : 2014.03.07
  • Published : 2014.03.31

Abstract

In this study, PSf-$Al(OH)_3$ beads were prepared by immobilizating aluminum hydroxide $Al(OH)_3$ with polysulfone (PSf). The removal experiments of the fluoride ions by PSf-$Al(OH)_3$ beads were conducted batchwise and the parameters such as pH, initial fluoride concentration, and coexisting ions were investigated. The maximum removal capacity obtained from Langmuir isotherm was 52.4 mg/g and the optimum pH region of fluoride ions was in the range of 4 to 10. The removal process of fluoride ions by PSf-$Al(OH)_3$ beads was found to be controlled by both external mass transfer at the earlier stage followed by internal diffusion at the later stage. The presence of coexisting anions such as $HCO_3{^-}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $Cl^-$ had a negative effect on removal of fluoride ions by PSf-$Al(OH)_3$ beads.

본 연구에서는 폴리술폰(polysulfone, PSf)으로 알루미늄 수산화물(aluminum hydroxide, $Al(OH)_3$)을 고정화한 PSf-$Al(OH)_3$ 비드를 제조하였다. 제조한 PSf-$Al(OH)_3$ 비드에 의한 불소 이온 제거실험은 회분식으로 수행하였으며, pH, 초기농도, 공존이온과 같은 변수들의 영향을 살펴보았다. Langmuir 등온식으로 구한 불소 이온의 최대 제거량은 52.4 mg/g이었으며, 최적 pH 범위는 4~10이었다. PSf-$Al(OH)_3$ 비드에 의한 불소 이온의 제거과정은 전 단계에서 외부물질전달이 나중 단계에서 내부확산이 지배인 것을 알 수 있었다. 또한 PSf-$Al(OH)_3$에 의한 불소 이온의 제거에서 $HCO_3{^-}$, $SO{_4}^{2-}$, $NO_3{^-}$, $Cl^-$와 같은 공존 음이온들은 불소 이온의 제거에 방해를 하는 것으로 나타났다.

Keywords

References

  1. Sujana, M. G., Soma, G., Vasumathi, N., and Anand, S., "Studies on Fluoride Adsorption Capacities of Amorphous Fe/Al Mixed Hydroxides from Aqueous Solutions," J. Fluor. Chem., 130, 749-754 (2009). https://doi.org/10.1016/j.jfluchem.2009.06.005
  2. Park, J. Y., Byun, H. J., Choi, W. H., and Kang, W. H., "Cement Paste Column for Simultaneous Removal of Fluoride, Phosphate, and Nitrate in Acidic Wastewater," Chemosphere, 70, 1429-1437 (2008). https://doi.org/10.1016/j.chemosphere.2007.09.012
  3. Xiong, X., Liu, J., He, W., Xia, T., He, P., Chen, X., and Wang, A., "Dose-Effect Relationship between Drinking Water Fluoride Levels and Damage to Liver and Kidney Functions in Children," Environ. Res. J., 103, 112-116 (2007). https://doi.org/10.1016/j.envres.2006.05.008
  4. Chuang, T. C., Huang, C. J., and Liu, J. C., "Treatment of Semiconductor Wastewater by Dissolved Air Flotation," J. Environ. Eng., 128, 974-980 (2002). https://doi.org/10.1061/(ASCE)0733-9372(2002)128:10(974)
  5. Eskandarpour, A., Onyango, M. S., Ochieng, A., and Asai, S., "Removal of Fluoride Ions from Aqueous Solution at Low pH Using Schwertmannite," J. Hazrd. Mater.. 152, 571-579 (2008). https://doi.org/10.1016/j.jhazmat.2007.07.020
  6. Ndiaye, P. I., Moulin, P., Dominguez, L., Millet, J. C., and Charbit, F., "Removal of Fluoride from Electronic Industrial Effluent by RO Membrane Separation," Desalination, 173, 25-32 (2005). https://doi.org/10.1016/j.desal.2004.07.042
  7. Huang, C. J., and Liu, J. C., "Precipitation Flotation of Fluoride-containing Wastewater from Semi-conductor Manufacture," Water Res., 33, 3403-3412 (1999). https://doi.org/10.1016/S0043-1354(99)00065-2
  8. Hu, C. Y., Lo, S. L., Kuan, W. H., and Lee, Y. D., "Removal of Fluoride from Semiconductor Wastewater by Electrocoagulation-flotation," Water Res., 39, 895-901 (2005). https://doi.org/10.1016/j.watres.2004.11.034
  9. Castel, C., Schweizer, M., Simonnot, M. O., and Sardin, M., "Selective Removal of Fluoride Ions by a Two-Way Ion-exchange Cyclic Process," Chem. Eng. Sci., 55, 3341-3352 (2000). https://doi.org/10.1016/S0009-2509(00)00009-9
  10. Zhou, Y., Yu, C., and Shan, Y., "Adsorption of Fluoride from Aqueous Solution on $La^{3+}$-Impregnated Cross-Linked Gelatin," Sep. Purif. Technol., 36, 89-94 (2004). https://doi.org/10.1016/S1383-5866(03)00167-9
  11. Raichur, A. M., and Basu, M. J., "Adsorption of Fluoride onto Mixed Rare Earth Oxides," Sep. Purif. Technol., 24, 121-127 (2001). https://doi.org/10.1016/S1383-5866(00)00219-7
  12. Shimelis, B., Zewge, F., and Chandravanshi, B. S., "Removal of Excess Fluoride from Water by Aluminum Hydroxide," Bull. Chem. Sco. Ethiop., 20, 17-34 (2006).
  13. Keyser, M. J., Conradie, M., Coertzen, M., and Van Dyk, J. C., "Effect of Coal Particle Size Distribution on Packed Bed Pressure Drop and Gas Flow Distribution," Fuel, 85, 1439-1445 (2006). https://doi.org/10.1016/j.fuel.2005.12.012
  14. Ganvir, V., and Das, K., "Removal of Fluoride from Drinking Water Using Aluminum Hydroxide Coated Rice Husk Ash," J. Hazard. Mater., 185(2), 1287-1294 (2011). https://doi.org/10.1016/j.jhazmat.2010.10.044
  15. Dou, X., Zhang, Y., Wang, H., Wang, T., and Wang, Y., "Perrmance of Granular Zirconium-iron Oxide in the Removal of Fluoride from Drinking Water," Water Res., 45(12), 3571-3578 (2011). https://doi.org/10.1016/j.watres.2011.04.002
  16. Wu, H. X., Wang, T. J., Chen, L., Jin, Y. Zhang, Y., and Dou, X. M., "Granulation of Fe-Al-Ce Hydroxide Nano-adsorbent by Immobilization in Porous Polyvinyl Alcohol for Fluoride Removal in Drinking Water," Powder Technol., 209, 92-97 (2011). https://doi.org/10.1016/j.powtec.2011.02.013
  17. Ma, X., Li, Y., Li, X., Yang, L., and Wang, X., "Preparation of Novel Polysulfone Capsules Containing Zirconium Phosphate and Their Properties for $Pb^{2+}$ Removal from Aqueous Solution," J. Hazard. Mater., 188(1), 296-303 (2011). https://doi.org/10.1016/j.jhazmat.2011.01.107
  18. Mao, M., Liu, Z., Wang, T., Yu, B., Wen, X., Yang, K., and Zhao, C., "Polysulfone-Activated Carbon Hybrid Particles for The Removal of BPA," Sep. Sci. Technol., 41, 515-529 (2006). https://doi.org/10.1080/01496390500524875
  19. Lee, M. G., Kam, S. K., and Suh, K. H., "Adsorption of Non-Degradable Eosin Y by Activated Carbon," J. Environ. Sci. Int., 21, 623-631 (2012). https://doi.org/10.5322/JES.2012.21.5.623
  20. Yao, Z. Y., Qi, J. H., and Wang, L. H., "Equilibrium Kinetic and Thermodynamic Studies on The Biosorption of Cu(II) onto Chestnut Shell," J. Hazard. Mater., 174, 137-143 (2010). https://doi.org/10.1016/j.jhazmat.2009.09.027
  21. Furusawa, T., and Smith, J. M., "Fluid-Particle and Intraparticle Mass Transport Rates in Slurries," Ind. Eng. Chem. Fundam., 12, 197-203 (1973). https://doi.org/10.1021/i160046a009
  22. Sljivic, M., Smiciklas, I., Plecas, I., and Pejanovic, S., "The Role of External and Internal Mass Transfer in The Process of $Cu^{2+}$ Removal by Natural Mineral Sorbents," Environ. Technol., 32, 933-943 (2011). https://doi.org/10.1080/09593330.2010.521952
  23. Sarkar, M., Acharya, P. K., and Bhattacharya, B., "Modeling the Adsorption Kinetics of Some Priority Organic Pollutants in Water from Diffusion and Activation Energy Parameters," J. Colloid Int. Sci., 266, 28-32 (2003). https://doi.org/10.1016/S0021-9797(03)00551-4
  24. Jagtap, S., Thakre, D., Wanjari, S., Kamble, S., Labhsetwar, N., Rayalu, S., "New Modified Chitosan-Based Adsorbent for Defluoridation of Water," J. Colloid Int. Sci., 332, 280-290 (2009). https://doi.org/10.1016/j.jcis.2008.11.080

Cited by

  1. Preparation of Novel PS-zeolite Beads Immobilized Zeolite with Polysulfone for Radioactive Materials vol.37, pp.3, 2015, https://doi.org/10.4491/KSEE.2015.37.3.145