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ON ZEROS OF THE BOUBAKER POLYNOMIALS

Seon-Hong Kim

Abstract. The Boubaker polynomials arose from the discretization of
the equations of heat transfer in pyrolysis starting from an assumed so-
lution of the form

1

N
e

A
H/z+1

∞∑

k=0

ξkJk(t),

where Jk is the k-th order Bessel function of the first kind. In this paper,
we investigate the distribution of zeros of the Boubaker polynomials.

1. Introduction

The Boubaker polynomials are defined by

Bn(x) =

⌊n/2⌋
∑

j=0

(−1)j
n− 4j

n− j

(

n− j

j

)

xn−2j

and satisfy the recurrence relations

B0(x) = 1, B1(x) = x, B2(x) = x2 + 2,

Bn(x) = xBn−1(x)−Bn−2(x), n ≥ 3.
(1)

The first few terms of this polynomial sequence starting from B3(x) are

B3(x) = x3 + x,

B4(x) = x4 − 2,

B5(x) = x5 − x3 − 3x,

B6(x) = x6 − 2x4 − 3x2 + 2,

B7(x) = x7 − 3x5 − 2x3 + 5x,

B8(x) = x8 − 4x6 + 8x2 − 2.
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The Boubaker polynomials arose from the discretization of the equations of
heat transfer in pyrolysis ([2], [5], [6]) starting from an assumed solution of the
form

1

N
e

A
H/z+1

∞
∑

k=0

ξkJk(t),

where Jk is the k-th order Bessel function of the first kind, and the Boubaker
Polynomials Expansion Scheme BPES has been used by several applied physics
and engineering studies. For references, see [1], [3], [4], [5], [6], [7], [9], [10].
In this paper, we study the Boubaker polynomials from a rather mathemati-

cal point of view. Perhaps one of the fundamental questions about polynomials
is to investigate how the zeros of polynomials are located in the complex plane.
It is the purpose of the present paper to investigate the distribution of zeros of
the Boubaker polynomials.

There have been similar results that are Theorem 3.1, Theorem 5.1, Remark
5.1, Corollary 5.1 in [12] to some of ours. But we have some doubts in the
proof of Theorem 5.1. The proof is based upon

(2) Bn(2 cos t) = 4 cos t sin(nt)− 2 cos(nt)

and

(3) tan t = 2 tan(nt).

But a numerical example shows that (2) is not true. Also for (3) being true, it
seems to be

Bn(2 cos t) = 4 cos t sin(nt)− 2 cos(nt) sin t

instead of (2) but this is not true either. Questioning of the proof of Theorem
5.1 does not allow us to believe in Remark 5.1. Also it is hard to understand
how the authors know that, in Remark 5.1 and Theorem 5.2, the two nonreal
complex zeros are purely imaginary. They stated these in Remark 5.1 without
proofs. Finally there seems to be a minor error in Theorem 3.1. Following their
proofs of Theorem 3.1, we can see that the result is |xi| ≤ 2 instead of |xi| < 2.
Our all corresponding proofs will be totally different from those in [12].

Before studying our main topics, we first remark their resultants. The re-
sultant of two polynomials is in general a rather complicated function of their
coefficients. However, there is an elegant formula for the resultant of any two
consecutive Boubaker polynomials due to I. Schur (see §6.71 of [11]). In fact,
using Schur’s result we can check that for n ≥ 2, the resultant of Bn(x) and
Bn−1(x) is

(−1)(
n
2)−1 · 2.

This means that if xj,n (1 ≤ j ≤ n) are the zeros of Bn(x), then

n
∏

j=1

Bn−1(xj,n) = (−1)(
n
2)−1 · 2.
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2. Results and proofs

We begin with obtaining a new representation of Boubaker polynomials.
This will be useful in the proof of Theorem 2.4.

Proposition 2.1. We have

Bn(x) = − 1√
x2 − 4

[

1

2n

(

2x
(

(x−
√

x2 − 4)n − (x+
√

x2 − 4)n
)

+
√

x2 − 4
(

(x −
√

x2 − 4)n + (x +
√

x2 − 4)n
))]

.

Proof. By (1), we see
(

Bn(x)
Bn−1(x)

)

=

(

x −1
1 0

)(

Bn−1(x)
Bn−2(x)

)

and

(4)

(

Bn(x)
Bn−1(x)

)

=

(

x −1
1 0

)n−2 (

B2(x)
B1(x)

)

=

(

x −1
1 0

)n−2 (

x2 + 2
x

)

.

Let

A =

(

x −1
1 0

)

.

Then the eigenvalues of matrix A are

(5) λ1 =
x−

√
x2 − 4

2
, λ2 =

x+
√
x2 − 4

2
,

and hence
(

x −1
1 0

)

=

(

λ1 λ2

1 1

)(

λ1 0
0 λ2

)(

λ1 λ2

1 1

)−1

.

This implies
(

x −1
1 0

)n−2

=
1

λ1 − λ2

(

λ1 λ2

1 1

)(

λn−2
1 0
0 λn−2

2

)(

1 −λ2

−1 λ1

)

.

Substituting this into (4) yields
(

Bn(x)
Bn−1(x)

)

=
1

λ1 − λ2

(

λn−1
1 − λn−1

2 −λn−1
1 λ2 + λ1λ

n−1
2

λn−2
1 − λn−2

2 −λn−2
1 λ2 + λ1λ

n−2
2

)(

x2 + 2
x

)

,

and by direct computation using (5), the result follows. �

Remarks. In the proof of above proposition, we obtained

Bn(x) =
1

λ1 − λ2

(2(λ1 + λ2)(λ
n
1 − λn

2 )− (λ1 − λ2)(λ
n
1 + λn

2 )) .

By simple computations, we may see that the zeros x of Bn(x) satisfy the
homogeneous equation in λ1 and λ2

λn+1
1 − λn+1

2 − 3λ1λ
n
2 + 3λn

1λ2 = 0,
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and
(

λ1

λ2

)n+1

− 1− 3

(

λ1

λ2

)

+ 3

(

λ1

λ2

)n

= 0.

With

(6) z :=
λ1

λ2

=
x−

√
x2 − 4

x+
√
x2 − 4

,

the above equation can be rewritten by

(7) zn+1 + 3zn − 3z − 1 = 0.

Also from (6) we can get a relation between x and z

(8) x2 = 2 + z +
1

z
.

From (7), we let

pn(z) = zn+1 + 3zn − 3z − 1

and investigate their zero distribution to obtain zero distribution results of
Bn(x). For this we need the following theorem about self-inversive polynomials.
A polynomial Pn(z) = anz

n + an−1z
n−1 + · · · + a0 with real coefficients is

said to be a self-inversive polynomial of degree n if it satisfies an 6= 0 and
Pn(z) = ±znPn(1/z). The polynomial pn(z) above is self-inversive.

Theorem 2.2 (Cohn). Let f(z) be a self-inversive polynomial of degree n.
Suppose that f(z) has exactly τ zeros on the unit circle (counted according

to multiplicity) and exactly ν critical points in the closed unit disc (counted
according to multiplicity). Then

τ = 2(ν + 1)− n.

We may see above theorem in p. 230 of [8]. Using this theorem, we obtain
the following. Throughout the rest, U denotes the unit circle for convenience
and n is a positive integer greater than 5.

Proposition 2.3. If n is odd, pn(z) has four real zeros

1, −1, z0,
1

z0

(

−3 < z0 < −3 +
1

n

)

and all the others are nonreal complex zeros on U . If n is even, pn(z) has three
real zeros

1, z1,
1

z1

(

−3− 1

n
< z1 < −3

)

and all the others are nonreal complex zeros on U .
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Proof. We observe that

pn(z) = (z − 1)(zn + 4zn−1 + 4zn−2 + · · ·+ 4z + 1)

is a self-inversive polynomial. By Descartes’ rule of signs, pn(z) has only one
positive real zero 1. Consider

p′n(z) = (n+ 1)zn + 3nzn−1 − 3.

Rouché’s theorem guarantees that p′n(z) has n− 1 zeros in the open unit disk
|z| < 1 since for z ∈ U ,

3n|z|n−1 = 3n > (n+ 1) + 3 ≥ |(n+ 1)zn − 3|.
Then by Theorem 2.2, pn(z) has n − 1 zeros on U . If n is odd, it is easy to
check that

pn(0) < 0, pn(±1) = 0, p′n(−1) = −(n+ 1) + 3n− 3 = 2(n− 2) > 0,

and for x > 1 we have pn(x) > 0 and pn(x) → +∞ as x → −∞. So there are
at least two negative real zeros z0 and z′0 other than −1 where

z0 < −1, −1 < z′0,

and z′0 = 1/z0 because pn(z) is self-inversive. Since the polynomial pn(z) of
degree n + 1 has n − 1 zeros on U and pn(±1) = 0, pn(z) has four real zeros
1, −1, z0,

1

z0
and all the others are nonreal complex zeros on U . Similarly, we

can show results for the case n even. It remains to obtain the bounds for real
zeros other than ±1. We first note that pn(−3) = 8 > 0. Suppose n is odd.
Using a well-known inequality: for x > −1, (1 + x)n ≥ 1 + nx,

pn

(

−3 +
1

n

)

=

(

−3 +
1

n

)n+1

+ 3

(

−3 +
1

n

)n

− 3

(

−3 +
1

n

)

− 1

=

(

3− 1

n

)n (

3− 1

n
− 3

)

+ 3

(

3− 1

n

)

− 1

= − 1

n

(

3− 1

n

)n

+ 8− 3

n
= −3n

n

(

1− 1

3n

)n

+ 8− 3

n

≤ −3n

n

(

1− n

3n

)

+ 8− 3

n
= −2 · 3n−1

n
+ 8− 3

n
< 0.

This implies that

−3 < z0 < −3 +
1

n
.

For n even,

p

(

−3− 1

n

)

=

(

−3− 1

n

)n+1

+ 3

(

−3− 1

n

)n

− 3

(

−3− 1

n

)

− 1

=

(

3 +
1

n

)n (

−3− 1

n
+ 3

)

+ 8 +
3

n
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= − 1

n

(

3 +
1

n

)n

+ 8 +
3

n
= −3n

n

(

1 +
1

3n

)n

+ 8 +
3

n

≤ −3n

n
· 1
3
+ 8 +

3

n
= −3n−1

n
+ 8 +

3

n
< 0,

which implies that

−3− 1

n
< z1 < −3. �

Now we prove the main result of the paper.

Theorem 2.4. The polynomial Bn(x) has n − 2 real zeros and two nonreal

complex zeros that are purely imaginary. All zeros of Bn(x) lie in |x| ≤ 2, and
the two purely imaginary zeros lie outside U . More specifically, the two purely

imaginary zeros, say ib0 and −ib0, satisfy






√

4n−3

3n < b0 <
√

4n−1

3n−1
, if n is odd,

√

4n+1

3n+1
< b0 <

√

4n+3

3n , if n is even.

Proof. We recall that by (8),

x2 = 2 + z +
1

z
,

where x is a zero of Bn and z is a zero of pn. By Proposition 2.3, all zeros of
pn(z) on U except real zeros are nonreal complex numbers. For such zeros z,

|x|2 =

∣

∣

∣

∣

2 + z +
1

z

∣

∣

∣

∣

≤ 4,

and so |x| ≤ 2. Also when z = ±1, |x| ≤ 2. For n odd and −3 < z0 < −3 + 1

n ,
we can compute that

−4n− 1

3n− 1
< x2

0 = 2 + z0 +
1

z0
< −4n− 3

3n

and so x0 is a purely imaginary zero of Bn and with x0 = ib0,

1 <

√

4n− 3

3n
< |b0| <

√

4n− 1

3n− 1
.

Since pn(z) is a polynomial with real coefficients, one more purely imaginary
zero of Bn must be −ib0. The case n even can be proved in the same way. �

Example 2.5. The two nonreal purely imaginary zeros ±ib0 = ±i 1.15328 · · ·
of B7(x) satisfy

1.0910 · · · < b0 < 1.1619 · · · .
The two nonreal purely imaginary zeros ±ib1 = ±i 1.15517 · · · of B8(x) satisfy

1.1489 · · · < b1 < 1.2076 · · · .
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