A CLASS OF ARITHMETIC FUNCTIONS ON $\mathrm{PSL}_{2}(\mathbb{Z})$, II

Paul Spiegelhalter and Alexandru Zaharescu

Abstract. Atanassov introduced the irrational factor function and the strong restrictive factor function, which he defined as

$$
I(n)=\prod_{p^{\alpha} \| n} p^{1 / \alpha} \quad \text { and } \quad R(n)=\prod_{p^{\alpha} \| n} p^{\alpha-1}
$$

in [2] and [3]. Various properties of these functions have been investigated by Alkan, Ledoan, Panaitopol, and the authors. In the prequel, we expanded these functions to a class of elements of $\operatorname{PSL}_{2}(\mathbb{Z})$, and studied some of the properties of these maps. In the present paper we generalize the previous work by introducing real moments and considering a larger class of maps. This allows us to explore new properties of these arithmetic functions.

1. Introduction

In the present paper, we continue the work done in [11], namely, a study of a class of arithmetic functions that generalize the so-called irrational factor function $I(n)$ and the strong restrictive factor function $R(n)$, which are defined in [2] and [3] by

$$
I(n)=\prod_{p^{\alpha} \| n} p^{1 / \alpha} \quad \text { and } \quad R(n)=\prod_{p^{\alpha} \| n} p^{\alpha-1}
$$

Panaitopol, Alkan, Ledoan, and the authors develop a number of results on these arithmetic functions ([1], [8], [9], and [10]). In the prequel, the authors establish results on the average values of the functions

$$
f_{A}(n)=\prod_{p^{\alpha} \| n} p^{\frac{a \alpha+b}{c \alpha+d}}
$$

for a class of matrices $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $\operatorname{PSL}_{2}(\mathbb{Z})$. Here, $\operatorname{PSL}_{2}(\mathbb{Z})=S L_{2}(\mathbb{Z}) / \pm I$, where I is the identity matrix.

[^0]We complement the results of the previous paper by considering real-valued λ-moments of these arithmetic functions $f_{A}(n)$, defined over a larger class of matrices in $\mathrm{PSL}_{2}(\mathbb{Z})$. This method offers greater flexibility, since the λ-weighted moments of the Dirichlet series associated with $f_{A}(n)$ may have meromorphic continuation to a region in which the original Dirichlet series has an essential singularity. As we shall see, this expands previous results to a more general framework, and leads to new results within this more general setting.

Consider the subset \mathcal{A} of $\mathrm{SL}_{2}(\mathbb{Z})$ given by

$$
\mathcal{A}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PSL}_{2}(\mathbb{Z}): c \geq 0, d>0\right\} .
$$

For each matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

in $\mathrm{PSL}_{2}(\mathbb{Z})$ consider the fractional linear transformation

$$
A z=\frac{a z+b}{c z+d}
$$

For each $\lambda>0$ we examine the λ-moment

$$
\left(f_{A}(n)\right)^{\lambda}=\prod_{p^{\alpha} \| n} p^{\lambda A \alpha} .
$$

A key tool in our study of the λ-moment is the Dirichlet series

$$
F_{A, \lambda}(s)=\sum_{n=1}^{\infty} \frac{\left(f_{A}(n)\right)^{\lambda}}{n^{s}}
$$

We say that the pair (A, λ) is good if there exists a half-plane where $F_{A, \lambda}$ has meromorphic continuation with at least one pole. Consider the space \mathbb{G} in $\mathcal{A} \times \mathbb{R}_{+}$of pairs (A, λ) that are good. Information about \mathbb{G} leads to information about λ-moments

$$
S_{A, \lambda}(x)=\sum_{n \leq x}\left(f_{A}(n)\right)^{\lambda}
$$

and more precise estimates about the weighted λ-moments such as

$$
M_{A, \lambda}(x)=\sum_{n \leq x}\left(1-\frac{n}{x}\right)\left(f_{A}(n)\right)^{\lambda} .
$$

Asymptotic formulas for such moments are given in the following section.
Theorem 1.1. Suppose λ is a positive real number. Given a matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in \mathcal{A}, necessary and sufficient conditions for the pair (A, λ) to be in \mathbb{G} are

- if $A=R_{k}=\left(\begin{array}{cc}1 & -k \\ 0 & 1\end{array}\right), k=1,2,3, \ldots$ and $0<\lambda<1 / k$,
- if $A \neq R_{k}, b \geq-1$ and $\lambda \in(0, \infty)$,
- if $A \neq R_{k}, b<-1$ and $0<\lambda<-\frac{d c}{b c+1}$.

For any $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in \mathcal{A} define $h(A)=\max \{|a|,|b|,|c|,|d|\}$. For any positive integer Q, define

$$
g_{Q}(\lambda)=\frac{\#\{A \in \mathcal{A}: h(A) \leq Q \text { and }(A, \lambda) \in \mathbb{G}\}}{\#\{A \in \mathcal{A}: h(A) \leq Q\}}
$$

Figure 1 shows the behavior of $g_{Q}(\lambda)$ for values of Q up to 75 . We will prove

Figure 1. Plot of the function $g_{Q}(\lambda)$
the following:
Theorem 1.2. The functions g_{Q} converge uniformly on compact subintervals of $(0, \infty)$ to g as $Q \rightarrow \infty$, where

$$
g(\lambda)= \begin{cases}1-\frac{\lambda}{4} & \text { if } 0 \leq \lambda<1 \\ \frac{1}{2}+\frac{1}{4 \lambda} & \text { if } \lambda \geq 1\end{cases}
$$

2. Proof of Theorem 1.1

Lemma 2.1. Suppose $F(s)$ is a Dirichlet series with Euler product

$$
F(s)=\prod_{p \text { prime }}\left(1+\frac{p^{c_{1}}}{p^{s}}+\frac{p^{c_{2}}}{p^{2 s}}+\frac{p^{c_{3}}}{p^{3 s}}+\cdots\right)
$$

where c_{1}, c_{2}, \ldots are real numbers independent of p. Assume there exists a finite set of natural numbers $\mathcal{N}=\left\{n_{1}, n_{2}, \ldots, n_{l}\right\}$ such that for all $1 \leq j, k \leq l$ we have $\frac{1}{n_{j}}\left(1+c_{n_{j}}\right)=\frac{1}{n_{k}}\left(1+c_{n_{k}}\right)$ and such that

$$
\frac{1}{n_{j}}\left(1+c_{n_{j}}\right)>\sup _{n \notin \mathcal{N}}\left\{\frac{1}{n}\left(1+c_{n}\right)\right\} .
$$

Then $F(s)$ satisfies

$$
F(s)=G(s) \prod_{j=1}^{l} \zeta\left(n_{j} s-c_{n_{j}}\right)
$$

where $G(s)$ is analytic in the half plane

$$
\Re(s)>\sup _{\substack{m \in \mathcal{N} \\ n \notin \mathcal{N}}}\left\{\frac{1}{n}\left(1+c_{n}\right), \frac{1}{m}\left(1 / 2+c_{m}\right)\right\}
$$

and is bounded in any closed half plane contained in this region.
Proof. We restrict ourselves to the case $l=1$; the remaining cases are similar. We factor

$$
\begin{aligned}
& \prod_{p}\left(1+\frac{p^{c_{1}}}{p^{s}}+\frac{p^{c_{2}}}{p^{2 s}}+\frac{p^{c_{3}}}{p^{3 s}}+\cdots\right) \\
= & \prod_{p}\left(1+\frac{p^{c_{n_{1}}}}{p^{n_{1} s}}\right)\left(1+\left(1+\frac{p^{c_{n_{1}}}}{p^{n_{1} s}}\right)^{-1} \sum_{\substack{n \geq 1 \\
n \neq n_{1}}} \frac{p^{c_{n}}}{p^{n s}}\right)
\end{aligned}
$$

and note that

$$
\prod_{p}\left(1+\frac{p^{c_{n_{1}}}}{p^{n_{1} s}}\right)=\frac{\zeta\left(n_{1} s-c_{n_{1}}\right)}{\zeta\left(2 n_{1} s-2 c_{n_{1}}\right)}
$$

Write $s=\sigma+i t$. The function $1 / \zeta\left(2 n_{1} s-2 c_{n_{1}}\right)$ is analytic for $\sigma>\frac{1}{n_{1}}\left(\frac{1}{2}+c_{n_{1}}\right)$. Also, for any fixed $\epsilon>1 / 2$ and $\sigma \geq \frac{1}{n_{1}}\left(\epsilon+c_{n_{1}}\right)$ we have that

$$
\left(1+\frac{p^{c_{n_{1}}}}{p^{n_{1} s}}\right)^{-1} \ll_{\epsilon} 1
$$

and for $\sigma>\epsilon+\sup _{n \neq n_{1}}\left\{\frac{1}{n}\left(1+c_{n}\right)\right\}$ we have

$$
\sum_{\substack{n \geq 1 \\ n \neq n_{1}}} \frac{p^{c_{n}}}{p^{n s}} \ll \sup _{n \neq n_{1}} \frac{p^{c_{n}}}{p^{n \sigma}} \ll \epsilon \frac{1}{p^{1+\epsilon}}
$$

So

$$
\sum_{p}\left|\left(1+\frac{p^{c_{n_{1}}}}{p^{n_{1} s}}\right)^{-1} \sum_{\substack{n \geq 1 \\ n \neq n_{1}}} \frac{p^{c_{n}}}{p^{n s}}\right|
$$

converges in any half plane of the form

$$
\sigma \geq \sigma_{0}>\epsilon+\sup _{n \neq n_{1}}\left\{\frac{c_{n_{1}}}{n_{1}}, \frac{1}{n}\left(1+c_{n}\right)\right\} .
$$

It follows that the product

$$
\prod_{p}\left(1+\left(1+\frac{p^{c_{n_{1}}}}{p^{n_{1} s}}\right)^{-1} \sum_{\substack{n \geq 1 \\ n \neq n_{1}}} \frac{p^{c_{n}}}{p^{n s}}\right)
$$

is uniformly bounded on the half-plane $\Re s>\sigma_{0}$ (see $\S 14.2$, p. 15 of [12]). Hence

$$
G(s)=\frac{1}{\zeta\left(2 n_{1} s-2 c_{n_{1}}\right)} \prod_{p}\left(1+\left(1+\frac{p^{c_{n_{1}}}}{p^{n_{1} s}}\right)^{-1} \sum_{\substack{n \geq 1 \\ n \neq n_{1}}} \frac{p^{c_{n}}}{p^{n s}}\right)
$$

is uniformly bounded on $\Re s \geq \max \left\{\sigma_{0}, \frac{1}{n_{1}}\left(\frac{1}{2}+c_{n_{1}}\right)\right\}$. Since $G(s)$ is analytic in this half-plane, the Dirichlet series $F(s)$ has a meromorphic continuation to this region, where it satisfies $F(s)=\zeta\left(n_{1} s-c_{n_{1}}\right) G(s)$.

We now give the proof of Theorem 1.1. Given a matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

in \mathcal{A}, we have that if $\alpha \geq 1$, then $\frac{a \alpha+b}{c \alpha+d}<(|a|+|b|) \alpha$. So $f_{A, \lambda}(n) \leq n^{|a|+|b|}$ and hence the Dirichlet series $F_{A, \lambda}(s)$ will be analytic in the region $\Re s>1+|a|+|b|$. In this region, F has an Euler product

$$
F_{A, \lambda}(s)=\prod_{p}\left(1+\frac{p^{\lambda A 1}}{p^{s}}+\frac{p^{\lambda A 2}}{p^{2 s}}+\frac{p^{\lambda A 3}}{p^{3 s}}+\cdots\right) .
$$

Let

$$
\begin{equation*}
\theta^{(1)}=\sup _{n \geq 1}\left\{\theta_{n}(\lambda)\right\}, \tag{1}
\end{equation*}
$$

where $\theta_{n}=\theta_{n}(\lambda)=\frac{1}{n}(1+\lambda A n)$. If the supremum in (1) is attained, then by employing Lemma 2.1 one can show that $(A, \lambda) \in \mathbb{G}$. Next, we identify this supremum by considering the function

$$
\theta(x, \lambda)=\frac{1}{x}\left(1+\lambda \frac{a x+b}{c x+d}\right),
$$

where x is positive and real-valued.
If $c=0$, then

$$
\begin{aligned}
\theta(x, \lambda) & =\frac{1}{x}\left(1+\lambda \frac{a x+b}{d}\right) \\
& =\frac{\lambda a}{d}+\frac{1}{x}\left(1+\frac{\lambda b}{d}\right) .
\end{aligned}
$$

If $c \neq 0$, then

$$
\frac{a x+b}{c x+d}=\frac{a}{c}-\frac{\operatorname{det} A}{c(c x+d)},
$$

and upon writing

$$
\frac{1}{x(c x+d)}=\frac{1 / d}{x}-\frac{c / d}{c x+d}
$$

we find that

$$
\theta(x, \lambda)=\frac{1}{x}\left(1+\frac{\lambda b}{d}\right)+\frac{1}{c x+d} \frac{\lambda \operatorname{det} A}{d} .
$$

Since $c x+d>0$ for all positive x, the expression $\theta(x, \lambda)$ will be a decreasing function of x if the coefficients of $\frac{1}{x}$ and $\frac{1}{c x+d}$ are positive. If $\operatorname{det} A=1$ with $a \geq 1$ and $b \geq 0$, then $\theta(x, \lambda)$ is a decreasing function of x for any $\lambda>0$, so $\sup _{n \geq 2}\left\{\theta_{n}\right\}<\theta_{1}$, and $(A, \lambda) \in \mathbb{G}$ for any λ in $(0, \infty)$. If $b \leq 0$, then $1+\lambda \frac{b}{d}$ is positive provided that $\lambda<-d / b$.

The partial derivative

$$
\frac{\partial}{\partial x} \theta(x, \lambda)=-\frac{\left(1+\lambda \frac{b}{d}\right)(c x+d)^{2}+\frac{c \lambda}{d} x^{2}}{x^{2}(c x+d)^{2}}
$$

is negative for large enough x provided that

$$
\begin{equation*}
0<c^{2}\left(1+\lambda \frac{b}{d}\right)+\frac{c \lambda}{d} . \tag{2}
\end{equation*}
$$

If $b=-1$ and $c=1$, then (3) gives that $(A, \lambda) \in \mathbb{G}$ for any λ in $(0, \infty)$ for such matrices A. More generally, if $b \neq-1$, then $b c \neq-1$, and so (2) is equivalent to

$$
\begin{equation*}
\lambda<-\frac{d c}{b c+1} \tag{3}
\end{equation*}
$$

We see that $\theta(x, \lambda)$ has a maximum provided that $\lambda>0$ is in this range, and hence so does $\theta_{n}(\lambda)$. This completes the proof of Theorem 1.1.

If we take x_{0} to be the value of x for which $\theta(x, \lambda)$ is maximal, then $\theta^{(1)}$ is equal to $\theta_{n_{1}}$, where $n_{1}=\left\lfloor x_{0}\right\rfloor$ or $n_{1}=\left\lceil x_{0}\right\rceil$. We remark that if λ is such that the above maximum is attained at both $\left\lfloor x_{0}\right\rfloor$ and $\left\lceil x_{0}\right\rceil$, where x_{0} is not an integer, then $F_{A, \lambda}(s)$ has a double pole at $s=\theta^{(1)}$. Furthermore, we note that for a given matrix A, the set of such exceptional λ is at most countable.

One can obtain an asymptotic formula for $M_{A, \lambda}(x)$ using the techniques of the prequel to this paper, which can be summarized as follows:

Write $F_{A, \lambda}(s)$ in the form given by Lemma 2.1 and use a variant of Perron's formula, namely

$$
\sum_{n \leq x}\left(1-\frac{n}{x}\right) f_{A, \lambda}(n)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F_{A, \lambda}(s) \frac{x^{s}}{s(s+1)} d s
$$

where $\sigma_{0}<c<\sigma_{0}+\delta$ for some $\delta>0$.

Apply the zero-free region for $\zeta(s)$ due to Korobov [7] and Vinogradov [14] (see also Chapters 2 and 5 of [15])

$$
\sigma \geq 1-c_{0}(\log t)^{-2 / 3}(\log \log t)^{-1 / 3}
$$

for $t \geq t_{0}$, in which

$$
\frac{1}{|\zeta(s)|} \ll(\log t)^{2 / 3}(\log \log t)^{1 / 3}
$$

(Recent improvements on explicit forms of this result can be found in [4] and [5]).

Fix U and T to be chosen later, with $0<U<T<x^{2}$, and let $\nu=$ $\frac{1}{n_{1}}\left(\frac{1}{2}+\lambda A_{n_{1}}\right)$ and

$$
\eta=\nu-c_{0}(\log U)^{-2 / 3}(\log \log U)^{-1 / 3}
$$

Deform the path of integration into the union of the line segments

$$
\begin{cases}\gamma_{1}, \gamma_{9}: s=c+i t & \text { if }|t| \geq T \\ \gamma_{2}, \gamma_{8}: s=\sigma \pm i T & \text { if } \nu \leq \sigma \leq c \\ \gamma_{3}, \gamma_{7}: s=\nu+i t & \text { if } U \leq|t| \leq T \\ \gamma_{4}, \gamma_{6}: s=\sigma \pm i U & \text { if } \eta \leq \sigma \leq \nu \\ \gamma_{5}: s=\eta+i t & \text { if }|t| \leq U\end{cases}
$$

The integrand is analytic on and within this modified contour, and by the residue theorem,

$$
M_{A, \lambda}(x)=K_{1} x^{\theta^{(1)}}+\sum_{k=1}^{9} J_{k}
$$

the main contribution being due to the residue of the simple pole at the point $s=\theta^{(1)}$.

In order to estimate the integral along the modified contour one makes use of the bounds

$$
|\zeta(\sigma+i t)|= \begin{cases}O\left(t^{(1-\sigma) / 2},\right. & \text { if } 0 \leq \sigma \leq 1 \text { and }|t| \geq 1 \\ O(\log t), & \text { if } 1 \leq \sigma \leq 2 \\ O(1), & \text { if } \sigma \geq 2\end{cases}
$$

(see [13], §3.11 and §5.1).
Upon estimating $\left|J_{i}\right|, i=1,2, \ldots, 9$ and selecting U and T so as to optimize the error terms, we get that if $(A, \lambda) \in \mathbb{G}$ and the pole of $F_{A, \lambda}(s)$ at $\theta^{(1)}$ is simple, then

$$
M_{A, \lambda}(x)=K_{1} x^{\theta^{(1)}}+R_{A, \lambda}(x),
$$

where

$$
R_{A, \lambda}(x) \ll_{A, \lambda} \max \left\{x^{\theta^{(2)}}, x^{\frac{1}{n_{1}}\left(\frac{1}{2}+\lambda A_{n_{1}}\right)} \exp \left\{-c(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right\}\right\}
$$

Notice that in the case where $x^{\theta^{(2)}}$ is of a larger order than

$$
\left.x^{\frac{1}{n_{1}}\left(\frac{1}{2}+\lambda A_{n_{1}}\right.}\right) \exp \left\{-c(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right\}
$$

one obtains a secondary term in the asymptotic formula for $M_{A, \lambda}(x)$ of the form $K_{2} x^{\theta^{(2)}}$

We remark that given a matrix A there may possibly be a finite or countable set of λ for which $F_{A, \lambda}(s)$ has a double pole at $s=\theta^{(1)}$. In these rare cases $M_{A, \lambda}(x)$ has a different order of magnitude. More precisely,

$$
M_{A, \lambda}(x) \sim K^{\prime} x^{\theta^{(1)}} \log x
$$

as $x \rightarrow \infty$, where K^{\prime} is a positive constant that depends only on A and λ.
For asymptotic formulas for the sums $S_{A, \lambda}(x)$ we use the following form of Perron's formula (see [12], Sections 9.42 and 9.44; and [13], Section 3.12):

$$
\sum_{n \leq x} a(n)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} A(s) \frac{x^{s}}{s} d s+R(x, c, T),
$$

where $A(s)$ is the Dirichlet series associated with $a(n)$ and

$$
|R(x, c, T)| \leq \frac{x^{c}}{T} \sum_{n=1}^{\infty} \frac{|a(n)|}{n^{c}|\log x / n|}
$$

It is more natural to consider this sum $S_{A, \lambda}(x)$ instead of $M_{A, \lambda}(x)$, but we note that the variant of Perron's formula used for $M_{A, \lambda}(x)$ has an extra factor of $\frac{1}{s+1}$ in the integrand, which makes estimations easier.

In order to estimate $S_{A, \lambda}(x)$, we apply the above version of Perron's formula with $a(n)=f_{A, \lambda}(n)$ and $A(s)=F_{A, \lambda}(s)$. Upon shifting the path of integration and replacing it with a rectangular path with vertices $c-i T, c+i T, \nu+i T$, and $\nu-i T$, one can apply Cauchy's theorem as before to obtain

$$
\sum_{n \leq x}\left(f_{A}(n)\right)^{\lambda}=K^{\prime \prime} x^{\theta^{(1)}}+\sum_{k=1}^{3} J_{k},
$$

where $K^{\prime \prime}$ is a positive constant depending only on A and λ. Upon estimating the remaining terms J_{k} and $R(x, c, T)$ and selecting T so as to optimize the resulting error terms, one finds that

$$
\sum_{n \leq x}\left(f_{A}(n)\right)^{\lambda}=K^{\prime \prime} x^{\theta^{(1)}}+R_{A, \lambda}^{\prime}(x),
$$

where

$$
R_{A, \lambda}^{\prime}(x) \ll_{A, \lambda} \max \left\{x^{\theta^{(2)}}, x^{\frac{1}{n_{1}}\left(\frac{1}{2}+\lambda A_{n_{1}}\right)}(\log x)^{r}\right\}
$$

and r is a positive constant that depends only on A and λ.
We also remark that even if (A, λ) is not in \mathbb{G}, one can still use Perron's formula to get nontrivial upper and lower bounds for $M_{A, \lambda}(x)$ of the form

$$
x^{C}<_{A, \lambda} M_{A, \lambda}(x) \ll_{A, \lambda, \epsilon} x^{C+\epsilon}
$$

for some positive constant C depending on A and λ.

3. Proof of Theorem 1.2

We begin with the following simple result.
Lemma 3.1. For any $0<\alpha<\beta$ and any $\epsilon>0$ we have

$$
\#\{\alpha q \leq m \leq \beta q:(m, q)=1\}=(\beta-\alpha) \phi(q)+O_{\epsilon}\left(q^{\epsilon}\right) .
$$

Proof. We have

$$
\begin{aligned}
\#\{\alpha q \leq m \leq \beta q:(m, q)=1\} & =\sum_{\alpha q \leq m \leq \beta q} \sum_{\substack{d|m \\
d| q}} 1 \\
& =\sum_{d \mid q} \mu(d) \sum_{\alpha q \leq m \leq \beta q} 1 \\
& =\sum_{d \mid q} \mu(d)\left(\left\lfloor\beta \frac{q}{d}\right\rfloor-\left\lfloor\alpha \frac{q}{d}\right\rfloor\right) .
\end{aligned}
$$

Since $\left|\sum_{d \mid q} \mu(d)\right| \leq \sum_{d \mid q} 1<_{\epsilon} q^{\epsilon}$ we have

$$
\begin{aligned}
\#\{\alpha q \leq m \leq \beta q:(m, q)=1\} & =(\beta-\alpha) q \sum_{d \mid q} \frac{\mu(d)}{d}+O_{\epsilon}\left(q^{\epsilon}\right) \\
& =(\beta-\alpha) \phi(q)+O_{\epsilon}\left(q^{\epsilon}\right)
\end{aligned}
$$

Note that if $c \geq 0$ and $b<0$, then the relation $a d-b c=1$ implies that $a \leq 0$. Letting $b \rightarrow-b$ and $a \rightarrow-a$, the given conditions can be replaced by $b c-a d=1, a, b, c, d>0$, and

$$
\begin{equation*}
0<\lambda<\frac{d c}{b c-1} \tag{4}
\end{equation*}
$$

Let

$$
N_{\mathcal{A}, a}(\lambda)=\#\{A \in \mathcal{A}: h(A)=c,(\lambda, A) \in \mathbb{G}\}
$$

and define $N_{\mathcal{A}, b}(\lambda), N_{\mathcal{A}, c}(\lambda)$, and $N_{\mathcal{A}, d}(\lambda)$ similarly for the cases where $h(A)=$ $b, h(A)=c$, and $h(A)=d$, so that

$$
\begin{aligned}
& \#\{A \in \mathcal{A}: h(A) \leq Q,(\lambda, A) \in \mathbb{G}\} \\
= & N_{\mathcal{A}, a}(\lambda)+N_{\mathcal{A}, b}(\lambda)+N_{\mathcal{A}, c}(\lambda)+N_{\mathcal{A}, d}(\lambda)+O(Q) .
\end{aligned}
$$

If $h(A)=c$, then $b c-a d=1$ implies $a d \equiv-1(\bmod c)$, hence $a \equiv$ $-\bar{d}(\bmod c)$. Since also $1 \leq a<c$, we have $a=c-\bar{d}$, where \bar{d} is the unique inverse of $d \bmod c$ satisfying $1 \leq \bar{d} \leq c$. So

$$
b=\frac{1+a d}{c}=\frac{1+c d-d \bar{d}}{c} .
$$

Inserting this into equation (4), we get

$$
\bar{d}>c \frac{\lambda-1}{\lambda} .
$$

We note that there are only $O(1)$ matrices A with $h(A)=1$. Hence

$$
\begin{aligned}
N_{\mathcal{A}, c}(\lambda) & =\sum_{2 \leq q \leq Q} \#\left\{1 \leq d \leq q:(d, q)=1, \bar{d}>q \frac{\lambda-1}{\lambda}\right\}+O(1) \\
& =\sum_{2 \leq q \leq Q} \#\left\{1 \leq m \leq q:(m, q)=1, m>q \frac{\lambda-1}{\lambda}\right\}+O(1) \\
& =\sum_{2 \leq q \leq Q} \#\left\{\max \left\{1, q \frac{\lambda-1}{\lambda}\right\} \leq m \leq q:(m, q)=1\right\}+O(1) \\
& = \begin{cases}\sum_{2 \leq q \leq Q} \phi(q)+O_{\epsilon}\left(Q^{1+\epsilon}\right) & \text { if } 0 \leq \lambda<1, \\
\frac{1}{\lambda} \sum_{2 \leq q \leq Q} \phi(q)+O_{\epsilon}\left(Q^{1+\epsilon}\right) & \text { if } \lambda \geq 1 .\end{cases}
\end{aligned}
$$

Using the well-known estimate

$$
\sum_{n \leq X} \phi(n)=\frac{1}{2 \zeta(2)} X^{2}+O(X \log X)
$$

(see for example [15] or Chapter 18 of [6]), we see that

$$
N_{\mathcal{A}, c}(\lambda)= \begin{cases}\frac{1}{2 \zeta(2)} Q^{2}+O_{\epsilon}\left(Q^{1+\epsilon}\right) & \text { if } 0 \leq \lambda<1 \\ \frac{1}{2 \lambda \zeta(2)} Q^{2}+O_{\epsilon}\left(Q^{1+\epsilon}\right) & \text { if } \lambda \geq 1\end{cases}
$$

If $h(A)=b$, then $b c-a d=1$ implies $a d \equiv-1(\bmod b)$, hence $a \equiv$ $-\bar{d}(\bmod b)$. Since also $1 \leq a<b$, we have $a=b-\bar{d}$, where \bar{d} is the unique inverse of $d \bmod b$ satisfying $1 \leq \bar{d} \leq b$. So

$$
c=\frac{1+a d}{b}=\frac{1+b d-d \bar{d}}{b} .
$$

Inserting this into equation (4), we get

$$
d>b \lambda+\frac{1}{\bar{d}-1} .
$$

This can only hold if $\lambda<1$, hence for $\lambda \geq 1$, we have

$$
\#\{A \in \mathcal{A}: h(A)=b,(\lambda, A) \in \mathbb{G}\}=0
$$

When $0<\lambda<1$, we note that $\bar{d}=1$ only when $d=1$ since $1 \leq d<b$. We get that $d>b \lambda$ for all but a bounded number of integers b. Also, we note that
again $h(A)=1$ for only $O(1)$ of these matrices. Hence for $0<\lambda<1$,

$$
\begin{aligned}
N_{\mathcal{A}, b}(\lambda) & =\sum_{2 \leq q \leq Q} \#\left\{1<d \leq q:(d, q)=1, d>b \lambda+\frac{1}{\bar{d}-1}\right\}+O(1) \\
& =\sum_{2 \leq q \leq Q}\left(\#\left\{1<d \leq q:(d, q)=1, d>b \lambda+\frac{1}{\bar{d}-1}\right\}+O(1)\right)+O(1) \\
& =\sum_{2 \leq q \leq Q} \#\{\lambda q \leq m \leq q:(m, q)=1\}+O(Q) \\
& =(1-\lambda) \sum_{2 \leq q \leq Q} \phi(q)+O_{\epsilon}\left(Q^{1+\epsilon}\right) \\
& =\frac{1-\lambda}{2 \zeta(2)} Q^{2}+O_{\epsilon}\left(Q^{1+\epsilon}\right) .
\end{aligned}
$$

If $h(A)=a$, then $b c-a d=1$ implies $b c \equiv 1(\bmod a)$, hence $b \equiv \bar{c}(\bmod a)$. Since also $1 \leq b<a$, we have $b=\bar{c}$, where \bar{c} is the unique inverse of $c \bmod a$ satisfying $1 \leq \bar{c} \leq a$. So

$$
d=\frac{b c-1}{a}=\frac{c \bar{c}-1}{a} .
$$

Inserting this into equation (4), we get that $a \lambda<c$. This can only hold if $\lambda<1$, hence for $\lambda \geq 1$, we have $\#\{A \in \mathcal{A}: h(A)=a,(\lambda, A) \in \mathbb{G}\}=0$. Furthermore, if $b c=1$, then $a d=2$, so there are $O(1)$ such matrices. When $0<\lambda<1$,

$$
\begin{aligned}
N_{\mathcal{A}, a}(\lambda) & =\sum_{2 \leq q \leq Q} \#\{1 \leq c \leq q:(c, q)=1, c>a \lambda\}+O(1) \\
& =\sum_{2 \leq q \leq Q} \#\{\lambda q \leq m \leq q:(m, q)=1\}+O(1) \\
& =(1-\lambda) \sum_{2 \leq q \leq Q} \phi(q)+O_{\epsilon}\left(Q^{1+\epsilon}\right) \\
& =\frac{1-\lambda}{2 \zeta(2)} Q^{2}+O_{\epsilon}\left(Q^{1+\epsilon}\right) .
\end{aligned}
$$

If $h(A)=d$, then $b c-a d=1$ implies $b c \equiv 1(\bmod d)$, hence $b \equiv \bar{c}(\bmod d)$. Since also $1 \leq b<c$, we have $b=\bar{c}$, where \bar{c} is the unique inverse of $c \bmod d$ satisfying $1 \leq \bar{c} \leq d$. So

$$
d=\frac{b c-1}{d}=\frac{c \bar{c}-1}{d} .
$$

Inserting this into equation (4), we get

$$
\bar{c}<\frac{d}{\lambda}+\frac{1}{c} .
$$

So $\bar{c}<\frac{d}{\lambda}$ for all but a bounded number of integers c. Since again there are $O(1)$ matrices with $b c=1$, we get

$$
\begin{aligned}
N_{\mathcal{A}, d}(\lambda) & =\sum_{2 \leq q \leq Q} \#\left\{1 \leq c \leq q:(c, q)=1, \bar{c}<\frac{d}{\lambda}+\frac{1}{c}\right\}+O(1) \\
& =\sum_{2 \leq q \leq Q}\left(\#\left\{1 \leq c \leq q:(c, q)=1, \bar{c}<\frac{d}{\lambda}\right\}+O(1)\right)+O(1) \\
& =\sum_{2 \leq q \leq Q} \#\left\{1 \leq m \leq \min \left\{q, \frac{q}{\lambda}\right\}:(m, q)=1\right\}+O(Q) \\
& = \begin{cases}\sum_{2 \leq q \leq Q} \phi(q)+O_{\epsilon}\left(Q^{1+\epsilon}\right) & \text { if } 0 \leq \lambda<1 \\
\frac{1}{\lambda} \sum_{2 \leq q \leq Q} \phi(q)+O_{\epsilon}\left(Q^{1+\epsilon}\right) & \text { if } \lambda \geq 1 .\end{cases} \\
& = \begin{cases}\frac{1}{2 \zeta(2)} Q^{2}+O_{\epsilon}\left(Q^{1+\epsilon}\right) & \text { if } 0 \leq \lambda<1 \\
\frac{1}{2 \lambda \zeta(2)} Q^{2}+O_{\epsilon}\left(Q^{1+\epsilon}\right) & \text { if } \lambda \geq 1 .\end{cases}
\end{aligned}
$$

Combining the above four cases, and the fact that if $\operatorname{det} A=-1$, then $(A, \lambda) \in$ \mathbb{G} for all $\lambda>0$, one obtains after a short calculation the desired result.

References

[1] E. Alkan, A. H. Ledoan, and A. Zaharescu, Asymptotic behavior of the irrational factor, Acta Math. Hungar. 121 (2008), no. 3, 293-305.
[2] K. T. Atanassov, Irrational factor: definition, properties and problems, Notes Number Theory Discrete Math. 2 (1996), no. 3, 42-44.
[3] , Restrictive factor: definition, properties and problems, Notes Number Theory Discrete Math. 8 (2002), no. 4, 117-119.
[4] K. Ford, Vinogradov's integral and bounds for the Riemann zeta function, Proc. London Math. Soc. 85 (2002), no. 3, 565-633.
[5] , Zero-free regions for the Riemann zeta function, Number theory for the millennium, II (Urbana, IL, 2000), 25-56, A K Peters, Natick, MA, 2002.
[6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Sixth edition, Oxford University Press, Oxford, 2008.
[7] N. M. Korobov, Estimates of trigonometric sums and their applications, Uspehi Mat. Nauk 13 (1958), no. 4, 185-192.
[8] A. Ledoan and A. Zaharescu, Real moments of the restrictive factor, Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 4, 559-566.
[9] L. Panaitopol, Properties of the Atanassov functions, Adv. Stud. Contemp. Math. (Kyungshang) 8 (2004), no. 1, 55-58.
[10] P. Spiegelhalter and A. Zaharescu, Strong and weak Atanassov pairs, Proc. Jangjeon Math. Soc. 14 (2011), no. 3, 355-361.
$[11] \ldots, A$ class of arithmetic functions on $\operatorname{PSL}_{2}(\mathbb{Z})$, To appear in: Bull. Korean Math. Soc.
[12] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, London, 1939.
[13] , The Theory of the Riemann Zeta-Function, Second Edition, The Clarendon Press Oxford University Press, New York, 1986.
[14] I. M. Vinogradov, A new estimate of the function $z \eta(1+i t)$, Izv. Akad. Nauk SSSR. Ser. Mat. 22 (1958), 161-164.
[15] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutsche Verlag der Wissenschaften, Berlin, 1963.

Paul Spiegelhalter
Department of Mathematics
University of Illinois
1409 West Green Street, Urbana, IL 61801, USA
E-mail address: spiegel3@illinois.edu
Alexandru Zaharescu
Department of Mathematics
University of Illinois
1409 West Green Street, Urbana, IL 61801, USA
E-mail address: zaharesc@illinois.edu

[^0]: Received October 16, 2012; Revised May 25, 2013.
 2010 Mathematics Subject Classification. Primary 11N37; Secondary 11B99.
 Key words and phrases. $\mathrm{PSL}_{2}(\mathbb{Z})$, Dirichlet series.
 The first author acknowledges support from National Science Foundation grant DMS 08-38434 EMSW21-MCTP: Research Experience for Graduate Students.

