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A CLASS OF ARITHMETIC FUNCTIONS ON PSL2(Z), II

Paul Spiegelhalter and Alexandru Zaharescu

Abstract. Atanassov introduced the irrational factor function and the

strong restrictive factor function, which he defined as

I(n) =
∏
pα||n

p1/α and R(n) =
∏
pα||n

pα−1

in [2] and [3]. Various properties of these functions have been investi-

gated by Alkan, Ledoan, Panaitopol, and the authors. In the prequel, we
expanded these functions to a class of elements of PSL2(Z), and studied

some of the properties of these maps. In the present paper we generalize

the previous work by introducing real moments and considering a larger
class of maps. This allows us to explore new properties of these arithmetic

functions.

1. Introduction

In the present paper, we continue the work done in [11], namely, a study
of a class of arithmetic functions that generalize the so-called irrational factor
function I(n) and the strong restrictive factor function R(n), which are defined
in [2] and [3] by

I(n) =
∏
pα||n

p1/α and R(n) =
∏
pα||n

pα−1.

Panaitopol, Alkan, Ledoan, and the authors develop a number of results on
these arithmetic functions ([1], [8], [9], and [10]). In the prequel, the authors
establish results on the average values of the functions

fA(n) =
∏
pα||n

p
aα+b
cα+d

for a class of matrices A =
(
a b
c d

)
in PSL2(Z). Here, PSL2(Z) = SL2(Z)/ ± I,

where I is the identity matrix.
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We complement the results of the previous paper by considering real-valued
λ-moments of these arithmetic functions fA(n), defined over a larger class of
matrices in PSL2(Z). This method offers greater flexibility, since the λ-weighted
moments of the Dirichlet series associated with fA(n) may have meromorphic
continuation to a region in which the original Dirichlet series has an essential
singularity. As we shall see, this expands previous results to a more general
framework, and leads to new results within this more general setting.

Consider the subset A of SL2(Z) given by

A =

{(
a b
c d

)
∈ PSL2(Z) : c ≥ 0, d > 0

}
.

For each matrix

A =

(
a b
c d

)
in PSL2(Z) consider the fractional linear transformation

Az =
az + b

cz + d
.

For each λ > 0 we examine the λ-moment

(fA(n))
λ

=
∏
pα||n

pλAα.

A key tool in our study of the λ-moment is the Dirichlet series

FA,λ(s) =

∞∑
n=1

(fA(n))
λ

ns
.

We say that the pair (A, λ) is good if there exists a half-plane where FA,λ
has meromorphic continuation with at least one pole. Consider the space G in
A×R+ of pairs (A, λ) that are good. Information about G leads to information
about λ-moments

SA,λ(x) =
∑
n≤x

(fA(n))
λ

and more precise estimates about the weighted λ-moments such as

MA,λ(x) =
∑
n≤x

(
1− n

x

)
(fA(n))

λ
.

Asymptotic formulas for such moments are given in the following section.

Theorem 1.1. Suppose λ is a positive real number. Given a matrix A =
(
a b
c d

)
in A, necessary and sufficient conditions for the pair (A, λ) to be in G are

• if A = Rk =
(
1 −k
0 1

)
, k = 1, 2, 3, . . . and 0 < λ < 1/k,

• if A 6= Rk, b ≥ −1 and λ ∈ (0,∞),
• if A 6= Rk, b < −1 and 0 < λ < − dc

bc+1 .
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For any A =
(
a b
c d

)
in A define h(A) = max {|a|, |b|, |c|, |d|}. For any positive

integer Q, define

gQ(λ) =
#{A ∈ A : h(A) ≤ Q and (A, λ) ∈ G}

#{A ∈ A : h(A) ≤ Q}
.

Figure 1 shows the behavior of gQ(λ) for values of Q up to 75. We will prove

Figure 1. Plot of the function gQ(λ)

the following:

Theorem 1.2. The functions gQ converge uniformly on compact subintervals
of (0,∞) to g as Q→∞, where

g(λ) =

1− λ

4
if 0 ≤ λ < 1,

1

2
+

1

4λ
if λ ≥ 1.

2. Proof of Theorem 1.1

Lemma 2.1. Suppose F (s) is a Dirichlet series with Euler product

F (s) =
∏

p prime

(
1 +

pc1

ps
+
pc2

p2s
+
pc3

p3s
+ · · ·

)
,

where c1, c2, . . . are real numbers independent of p. Assume there exists a finite
set of natural numbers N = {n1, n2, . . . , nl} such that for all 1 ≤ j, k ≤ l we
have 1

nj

(
1 + cnj

)
= 1

nk
(1 + cnk) and such that

1

nj

(
1 + cnj

)
> sup
n 6∈N

{
1

n
(1 + cn)

}
.
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Then F (s) satisfies

F (s) = G(s)

l∏
j=1

ζ(njs− cnj )

where G(s) is analytic in the half plane

<(s) > sup
m∈N
n 6∈N

{
1

n
(1 + cn) ,

1

m
(1/2 + cm)

}
and is bounded in any closed half plane contained in this region.

Proof. We restrict ourselves to the case l = 1; the remaining cases are similar.
We factor ∏

p

(
1 +

pc1

ps
+
pc2

p2s
+
pc3

p3s
+ · · ·

)

=
∏
p

(
1 +

pcn1

pn1s

)1 +

(
1 +

pcn1

pn1s

)−1 ∑
n≥1
n 6=n1

pcn

pns


and note that ∏

p

(
1 +

pcn1

pn1s

)
=

ζ(n1s− cn1
)

ζ(2n1s− 2cn1)
.

Write s = σ+it. The function 1/ζ(2n1s−2cn1
) is analytic for σ > 1

n1

(
1
2 + cn1

)
.

Also, for any fixed ε > 1/2 and σ ≥ 1
n1

(ε+ cn1
) we have that(

1 +
pcn1

pn1s

)−1
�ε 1,

and for σ > ε+ supn 6=n1

{
1
n (1 + cn)

}
we have∑

n≥1
n6=n1

pcn

pns
� sup

n 6=n1

pcn

pnσ
�ε

1

p1+ε
.

So

∑
p

∣∣∣∣∣∣∣∣
(

1 +
pcn1

pn1s

)−1 ∑
n≥1
n 6=n1

pcn

pns

∣∣∣∣∣∣∣∣
converges in any half plane of the form

σ ≥ σ0 > ε+ sup
n 6=n1

{
cn1

n1
,

1

n
(1 + cn)

}
.
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It follows that the product

∏
p

1 +

(
1 +

pcn1

pn1s

)−1 ∑
n≥1
n 6=n1

pcn

pns


is uniformly bounded on the half-plane <s > σ0 (see §14.2, p.15 of [12]). Hence

G(s) =
1

ζ(2n1s− 2cn1)

∏
p

1 +

(
1 +

pcn1

pn1s

)−1 ∑
n≥1
n 6=n1

pcn

pns


is uniformly bounded on <s ≥ max

{
σ0,

1
n1

(
1
2 + cn1

)}
. Since G(s) is analytic

in this half-plane, the Dirichlet series F (s) has a meromorphic continuation to
this region, where it satisfies F (s) = ζ(n1s− cn1)G(s). �

We now give the proof of Theorem 1.1. Given a matrix

A =

(
a b
c d

)
in A, we have that if α ≥ 1, then aα+b

cα+d < (|a|+ |b|)α. So fA,λ(n) ≤ n|a|+|b| and

hence the Dirichlet series FA,λ(s) will be analytic in the region <s > 1+|a|+|b|.
In this region, F has an Euler product

FA,λ(s) =
∏
p

(
1 +

pλA1

ps
+
pλA2

p2s
+
pλA3

p3s
+ · · ·

)
.

Let

(1) θ(1) = sup
n≥1
{θn(λ)},

where θn = θn(λ) = 1
n (1 + λAn). If the supremum in (1) is attained, then by

employing Lemma 2.1 one can show that (A, λ) ∈ G. Next, we identify this
supremum by considering the function

θ(x, λ) =
1

x

(
1 + λ

ax+ b

cx+ d

)
,

where x is positive and real-valued.
If c = 0, then

θ(x, λ) =
1

x

(
1 + λ

ax+ b

d

)
=

λa

d
+

1

x

(
1 +

λb

d

)
.
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If c 6= 0, then
ax+ b

cx+ d
=
a

c
− detA

c(cx+ d)
,

and upon writing
1

x(cx+ d)
=

1/d

x
− c/d

cx+ d

we find that

θ(x, λ) =
1

x

(
1 +

λb

d

)
+

1

cx+ d

λ detA

d
.

Since cx+d > 0 for all positive x, the expression θ(x, λ) will be a decreasing
function of x if the coefficients of 1

x and 1
cx+d are positive. If detA = 1 with

a ≥ 1 and b ≥ 0, then θ(x, λ) is a decreasing function of x for any λ > 0, so
supn≥2{θn} < θ1, and (A, λ) ∈ G for any λ in (0,∞). If b ≤ 0, then 1 + λ bd is
positive provided that λ < −d/b.

The partial derivative

∂

∂x
θ(x, λ) = −

(
1 + λ bd

)
(cx+ d)2 + cλ

d x
2

x2(cx+ d)2

is negative for large enough x provided that

(2) 0 < c2
(

1 + λ
b

d

)
+
cλ

d
.

If b = −1 and c = 1, then (3) gives that (A, λ) ∈ G for any λ in (0,∞) for such
matrices A. More generally, if b 6= −1, then bc 6= −1, and so (2) is equivalent
to

(3) λ < − dc

bc+ 1
.

We see that θ(x, λ) has a maximum provided that λ > 0 is in this range, and
hence so does θn(λ). This completes the proof of Theorem 1.1.

If we take x0 to be the value of x for which θ(x, λ) is maximal, then θ(1)

is equal to θn1
, where n1 = bx0c or n1 = dx0e. We remark that if λ is such

that the above maximum is attained at both bx0c and dx0e, where x0 is not an
integer, then FA,λ(s) has a double pole at s = θ(1). Furthermore, we note that
for a given matrix A, the set of such exceptional λ is at most countable.

One can obtain an asymptotic formula for MA,λ(x) using the techniques of
the prequel to this paper, which can be summarized as follows:

Write FA,λ(s) in the form given by Lemma 2.1 and use a variant of Perron’s
formula, namely∑

n≤x

(
1− n

x

)
fA,λ(n) =

1

2πi

∫ c+i∞

c−i∞
FA,λ(s)

xs

s(s+ 1)
ds,

where σ0 < c < σ0 + δ for some δ > 0.
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Apply the zero-free region for ζ(s) due to Korobov [7] and Vinogradov [14]
(see also Chapters 2 and 5 of [15])

σ ≥ 1− c0(log t)−2/3(log log t)−1/3

for t ≥ t0, in which
1

|ζ(s)|
� (log t)2/3(log log t)1/3

(Recent improvements on explicit forms of this result can be found in [4] and
[5]).

Fix U and T to be chosen later, with 0 < U < T < x2, and let ν =
1
n1

(
1
2 + λAn1

)
and

η = ν − c0(logU)−2/3(log logU)−1/3.

Deform the path of integration into the union of the line segments

γ1, γ9 : s = c+ it if |t| ≥ T
γ2, γ8 : s = σ ± iT if ν ≤ σ ≤ c
γ3, γ7 : s = ν + it if U ≤ |t| ≤ T
γ4, γ6 : s = σ ± iU if η ≤ σ ≤ ν
γ5 : s = η + it if |t| ≤ U.

The integrand is analytic on and within this modified contour, and by the
residue theorem,

MA,λ(x) = K1x
θ(1) +

9∑
k=1

Jk,

the main contribution being due to the residue of the simple pole at the point
s = θ(1).

In order to estimate the integral along the modified contour one makes use
of the bounds

|ζ(σ + it)| =


O(t(1−σ)/2, if 0 ≤ σ ≤ 1 and |t| ≥ 1

O(log t), if 1 ≤ σ ≤ 2

O(1), if σ ≥ 2

(see [13], §3.11 and §5.1).
Upon estimating |Ji|, i = 1, 2, . . . , 9 and selecting U and T so as to optimize

the error terms, we get that if (A, λ) ∈ G and the pole of FA,λ(s) at θ(1) is
simple, then

MA,λ(x) = K1x
θ(1) +RA,λ(x),

where

RA,λ(x)�A,λ max
{
xθ

(2)

, x
1
n1

( 1
2+λAn1) exp{−c(log x)3/5(log log x)−1/5}

}
.
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Notice that in the case where xθ
(2)

is of a larger order than

x
1
n1

( 1
2+λAn1) exp{−c(log x)3/5(log log x)−1/5},

one obtains a secondary term in the asymptotic formula for MA,λ(x) of the

form K2x
θ(2) .

We remark that given a matrix A there may possibly be a finite or countable
set of λ for which FA,λ(s) has a double pole at s = θ(1). In these rare cases
MA,λ(x) has a different order of magnitude. More precisely,

MA,λ(x) ∼ K ′xθ
(1)

log x

as x→∞, where K ′ is a positive constant that depends only on A and λ.
For asymptotic formulas for the sums SA,λ(x) we use the following form of

Perron’s formula (see [12], Sections 9.42 and 9.44; and [13], Section 3.12):∑
n≤x

a(n) =
1

2πi

∫ c+iT

c−iT
A(s)

xs

s
ds+R(x, c, T ),

where A(s) is the Dirichlet series associated with a(n) and

|R(x, c, T )| ≤ xc

T

∞∑
n=1

|a(n)|
nc| log x/n|

.

It is more natural to consider this sum SA,λ(x) instead of MA,λ(x), but we
note that the variant of Perron’s formula used for MA,λ(x) has an extra factor
of 1

s+1 in the integrand, which makes estimations easier.

In order to estimate SA,λ(x), we apply the above version of Perron’s formula
with a(n) = fA,λ(n) and A(s) = FA,λ(s). Upon shifting the path of integration
and replacing it with a rectangular path with vertices c − iT , c + iT , ν + iT ,
and ν − iT , one can apply Cauchy’s theorem as before to obtain∑

n≤x

(fA(n))
λ

= K ′′xθ
(1)

+

3∑
k=1

Jk,

where K ′′ is a positive constant depending only on A and λ. Upon estimating
the remaining terms Jk and R(x, c, T ) and selecting T so as to optimize the
resulting error terms, one finds that∑

n≤x

(fA(n))
λ

= K ′′xθ
(1)

+R′A,λ(x),

where

R′A,λ(x)�A,λ max
{
xθ

(2)

, x
1
n1

( 1
2+λAn1)(log x)r

}
and r is a positive constant that depends only on A and λ.

We also remark that even if (A, λ) is not in G, one can still use Perron’s
formula to get nontrivial upper and lower bounds for MA,λ(x) of the form

xC �A,λ MA,λ(x)�A,λ,ε x
C+ε
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for some positive constant C depending on A and λ.

3. Proof of Theorem 1.2

We begin with the following simple result.

Lemma 3.1. For any 0 < α < β and any ε > 0 we have

#{αq ≤ m ≤ βq : (m, q) = 1} = (β − α)φ(q) +Oε(q
ε).

Proof. We have

#{αq ≤ m ≤ βq : (m, q) = 1} =
∑

αq≤m≤βq

∑
d|m
d|q

1

=
∑
d|q

µ(d)
∑

αq≤m≤βq
d|m

1

=
∑
d|q

µ(d)
(⌊
β
q

d

⌋
−
⌊
α
q

d

⌋)
.

Since |
∑
d|q µ(d)| ≤

∑
d|q 1�ε q

ε we have

#{αq ≤ m ≤ βq : (m, q) = 1} = (β − α)q
∑
d|q

µ(d)

d
+Oε(q

ε)

= (β − α)φ(q) +Oε(q
ε). �

Note that if c ≥ 0 and b < 0, then the relation ad − bc = 1 implies that
a ≤ 0. Letting b → −b and a → −a, the given conditions can be replaced by
bc− ad = 1, a, b, c, d > 0, and

(4) 0 < λ <
dc

bc− 1
.

Let

NA,a(λ) = # {A ∈ A : h(A) = c, (λ,A) ∈ G} ,
and define NA,b(λ), NA,c(λ), and NA,d(λ) similarly for the cases where h(A) =
b, h(A) = c, and h(A) = d, so that

# {A ∈ A : h(A) ≤ Q, (λ,A) ∈ G}
= NA,a(λ) +NA,b(λ) +NA,c(λ) +NA,d(λ) +O(Q).

If h(A) = c, then bc − ad = 1 implies ad ≡ −1 (mod c), hence a ≡
−d̄ (mod c). Since also 1 ≤ a < c, we have a = c − d̄, where d̄ is the unique
inverse of d mod c satisfying 1 ≤ d̄ ≤ c. So

b =
1 + ad

c
=

1 + cd− dd̄
c

.
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Inserting this into equation (4), we get

d̄ > c
λ− 1

λ
.

We note that there are only O(1) matrices A with h(A) = 1. Hence

NA,c(λ) =
∑

2≤q≤Q

#

{
1 ≤ d ≤ q : (d, q) = 1, d̄ > q

λ− 1

λ

}
+O(1)

=
∑

2≤q≤Q

#

{
1 ≤ m ≤ q : (m, q) = 1,m > q

λ− 1

λ

}
+O(1)

=
∑

2≤q≤Q

#

{
max

{
1, q

λ− 1

λ

}
≤ m ≤ q : (m, q) = 1

}
+O(1)

=


∑

2≤q≤Q

φ(q) +Oε(Q
1+ε) if 0 ≤ λ < 1,

1

λ

∑
2≤q≤Q

φ(q) +Oε(Q
1+ε) if λ ≥ 1.

Using the well-known estimate∑
n≤X

φ(n) =
1

2ζ(2)
X2 +O(X logX)

(see for example [15] or Chapter 18 of [6]), we see that

NA,c(λ) =


1

2ζ(2)
Q2 +Oε(Q

1+ε) if 0 ≤ λ < 1,

1

2λζ(2)
Q2 +Oε(Q

1+ε) if λ ≥ 1.

If h(A) = b, then bc − ad = 1 implies ad ≡ −1 (mod b), hence a ≡
−d̄ (mod b). Since also 1 ≤ a < b, we have a = b − d̄, where d̄ is the unique
inverse of d mod b satisfying 1 ≤ d̄ ≤ b. So

c =
1 + ad

b
=

1 + bd− dd̄
b

.

Inserting this into equation (4), we get

d > bλ+
1

d̄− 1
.

This can only hold if λ < 1, hence for λ ≥ 1, we have

# {A ∈ A : h(A) = b, (λ,A) ∈ G} = 0.

When 0 < λ < 1, we note that d̄ = 1 only when d = 1 since 1 ≤ d < b. We
get that d > bλ for all but a bounded number of integers b. Also, we note that
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again h(A) = 1 for only O(1) of these matrices. Hence for 0 < λ < 1,

NA,b(λ) =
∑

2≤q≤Q

#

{
1 < d ≤ q : (d, q) = 1, d > bλ+

1

d̄− 1

}
+O(1)

=
∑

2≤q≤Q

(
#

{
1 < d ≤ q : (d, q) = 1, d > bλ+

1

d̄− 1

}
+O(1)

)
+O(1)

=
∑

2≤q≤Q

# {λq ≤ m ≤ q : (m, q) = 1}+O(Q)

= (1− λ)
∑

2≤q≤Q

φ(q) +Oε(Q
1+ε)

=
1− λ
2ζ(2)

Q2 +Oε(Q
1+ε).

If h(A) = a, then bc− ad = 1 implies bc ≡ 1 (mod a), hence b ≡ c̄ (mod a).
Since also 1 ≤ b < a, we have b = c̄, where c̄ is the unique inverse of c mod a
satisfying 1 ≤ c̄ ≤ a. So

d =
bc− 1

a
=
cc̄− 1

a
.

Inserting this into equation (4), we get that aλ < c. This can only hold if λ < 1,
hence for λ ≥ 1, we have # {A ∈ A : h(A) = a, (λ,A) ∈ G} = 0. Furthermore,
if bc = 1, then ad = 2, so there are O(1) such matrices. When 0 < λ < 1,

NA,a(λ) =
∑

2≤q≤Q

# {1 ≤ c ≤ q : (c, q) = 1, c > aλ}+O(1)

=
∑

2≤q≤Q

# {λq ≤ m ≤ q : (m, q) = 1}+O(1)

= (1− λ)
∑

2≤q≤Q

φ(q) +Oε(Q
1+ε)

=
1− λ
2ζ(2)

Q2 +Oε(Q
1+ε).

If h(A) = d, then bc− ad = 1 implies bc ≡ 1 (mod d), hence b ≡ c̄ (mod d).
Since also 1 ≤ b < c, we have b = c̄, where c̄ is the unique inverse of c mod d
satisfying 1 ≤ c̄ ≤ d. So

d =
bc− 1

d
=
cc̄− 1

d
.

Inserting this into equation (4), we get

c̄ <
d

λ
+

1

c
.
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So c̄ < d
λ for all but a bounded number of integers c. Since again there are

O(1) matrices with bc = 1, we get

NA,d(λ) =
∑

2≤q≤Q

#

{
1 ≤ c ≤ q : (c, q) = 1, c̄ <

d

λ
+

1

c

}
+O(1)

=
∑

2≤q≤Q

(
#

{
1 ≤ c ≤ q : (c, q) = 1, c̄ <

d

λ

}
+O(1)

)
+O(1)

=
∑

2≤q≤Q

#
{

1 ≤ m ≤ min{q, q
λ
} : (m, q) = 1

}
+O(Q)

=


∑

2≤q≤Q

φ(q) +Oε(Q
1+ε) if 0 ≤ λ < 1,

1

λ

∑
2≤q≤Q

φ(q) +Oε(Q
1+ε) if λ ≥ 1.

=


1

2ζ(2)
Q2 +Oε(Q

1+ε) if 0 ≤ λ < 1,

1

2λζ(2)
Q2 +Oε(Q

1+ε) if λ ≥ 1.

Combining the above four cases, and the fact that if detA = −1, then (A, λ) ∈
G for all λ > 0, one obtains after a short calculation the desired result.
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